List-Based Threshold Accepting Algorithm with Improved Neighbor Operator for 0–1 Knapsack Problem
Abstract
:1. Introduction
2. Related Work
2.1. List-Based Threshold Algorithm
2.1.1. Initialize the List of Threshold Values
2.1.2. Iteration of the Algorithm
2.1.3. Conservation of Threshold Strategy
2.1.4. Pseudocode of LBTA
Algorithm 1: List-based threshold accepting algorithm |
2.2. 0–1 KP
Algorithm 2: Greedy drop operator |
Algorithm 3: Greedy add operator |
3. LBTA Algorithm with Enhanced Local Search for 0–1 KP
3.1. Solution Representation
3.2. The Initialization and Update of Threshold List
3.3. Improved Neighbor Operator
Algorithm 4: A bit-flip mutation operator |
3.4. Hybrid Greedy Repair and Optimized Operator
Algorithm 5: Hybrid greedy optimization operator |
3.5. The Framework of the LBTA Algorithm for 0–1 KP
Algorithm 6: The framework of LBTA |
4. Behaviors Analysis
4.1. Parameters Settings
4.2. Performance Tuning for the Feasible Bit-Flip Operator
HGGA (2020) | NM (2021) | CMBO (2018) | LBTA | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | BKV | Best | Mean | Worst | SD | Best | Mean | Worst | SD | Best | Mean | Worst | SD | Best | Mean | Worst | SD | ||||
KP01 | 40,686 | 40,686 | 40,685.00 | 40,685 | 6.00 × | 40,685 | 40,684.88 | 40,684 | 2.20 × | 40,686 | 40,683.00 | 40,683 | 7.10 × | 40,686 | 40,685.07 | 40,685 | 2.46 × | ||||
KP02 | 50,592 | 50,592 | 50,592.00 | 50,592 | 0.00 | 50,592 | 50,592.00 | 50,592 | 0.00 | 50,592 | 50,590.00 | 50,590 | 4.90 × | 50,592 | 50,592.00 | 50,592 | 0.00 | ||||
KP03 | 61,846 | 61,846 | 61,845.90 | 61,845 | 3.70 × | 61,846 | 61,845.32 | 61,845 | 4.40 × | 61,845 | 61,841.00 | 61,840 | 1.38 | 61,846 | 61,845.33 | 61,845 | 1.62 × | ||||
KP04 | 77,033 | 77,033 | 77,033.00 | 77,033 | 0.00 | 77,033 | 77,032.92 | 77,032 | 1.50 × | 77,033 | 77,031.00 | 77,031 | 3.10 × | 77,033 | 77,032.77 | 77,032 | 1.30 × | ||||
KP05 | 102,316 | 102,316 | 102,315.99 | 102,3165 | 2.00 × | 102,316 | 102,316.00 | 102,316 | 0.00 | 102,316 | 102,314.00 | 102,313 | 1.11 | 102,316 | 102,315.53 | 102,314 | 1.96 × | ||||
KP06 | 35,069 | 35,069 | 35,069.00 | 35,069 | 0.00 | 35,069 | 35,069.00 | 35,069 | 0.00 | 35,069 | 35,067 | 35,064 | 1.47 | 35,069 | 35,069.00 | 35,069 | 0.00 | ||||
KP07 | 43,786 | 43,786 | 43,786.00 | 43,786 | 0.00 | 43,786 | 43,785.96 | 43,785 | 8.00 × | 43,786 | 43,784.00 | 43,781 | 1.34 | 43,786 | 43,786.00 | 43786 | 0.00 | ||||
KP08 | 53,553 | 53,553 | 53,552.48 | 53,552 | 5.00 × | 53,553 | 53,552.02 | 53,552 | 4.00 × | 53,552 | 53,552.00 | 53,552 | 0.00 | 53,553 | 53,552.10 | 53,552 | 1.87 × | ||||
KP09 | 65,710 | 65,710 | 65,709.11 | 65,709 | 2.00 × | 65,709 | 65,709.00 | 65,709 | 0.00 | 65,710 | 65,709.00 | 65,708 | 5.80 × | 65,710 | 65,709.13 | 65,709 | 1.52 × | ||||
KP10 | 118,200 | 118,200 | 118,200.00 | 118,200 | 0.00 | 108,200 | 108,200.00 | 108,200 | 0.00 | 108,200 | 108,200.00 | 108,200 | 0.00 | 118,200 | 118,200.00 | 118,200 | 0.00 | ||||
KP11 | 40,167 | 40,167 | 40,167.00 | 40,167 | 0.00 | 40,167 | 40,167.00 | 40,167 | 0.00 | 40,167 | 40,167.00 | 40,166 | 1.40 × | 40,167 | 40,167.00 | 40,167 | 0.00 | ||||
KP12 | 49,443 | 49,443 | 49,443.00 | 49,443 | 0.00 | 49,443 | 49,443.00 | 49,443 | 0.00 | 49,433 | 49,432.00 | 49,433 | 2.49 | 49,443 | 49,443.00 | 49,443 | 0.00 | ||||
KP13 | 60,640 | 60,640 | 60,640.00 | 60,640 | 0.00 | 60,640 | 60,640.00 | 60,640 | 0.00 | 60,640 | 60,640.00 | 60,639 | 1.40 × | 60,640 | 60,640.00 | 60,640 | 0.00 | ||||
KP14 | 74,932 | 74,932 | 74,932.00 | 74,932 | 0.00 | 74,932 | 74,932.00 | 74,932 | 0.00 | 74,932 | 74,932.00 | 74,931 | 2.70 × | 74,932 | 74,932.00 | 74932 | 0.00 | ||||
KP15 | 99,683 | 99,683 | 99,683.00 | 99,683 | 0.00 | 99,683 | 99,683.00 | 99,683 | 0.00 | 99,683 | 99,682.00 | 99,672 | 2.23 | 99,683 | 99,683.00 | 99,683 | 0.00 | ||||
order | 15 | 12 | 14 | 10 | 13 | 9 | 12 | 10 | 13 | 1 | 2 | 2 | 15 | 11 | 13 | 11 | |||||
rank | 1 | 3 | 3 | 1 |
5. Competitiveness of the LBTA Algorithm
5.1. Competitiveness of the LBTA Algorithm on the First Set of Instances
5.2. Competitiveness of the LBTA Algorithm on the Second Set of Instances
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarantilis, C.D.; Kiranoudis, C.T. A list-based threshold accepting method for job shop scheduling problems. Int. J. Prod. Econ. 2002, 77, 159–171. [Google Scholar] [CrossRef]
- Dueck, G.; Scheuer, T. Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 1990, 90, 161–175. [Google Scholar] [CrossRef]
- Tarantilis, C.D.; Ioannou, G.; Kiranoudis, C.T.; Prastacos, G.P. Solving the open vehicle routeing problem via a single parameter metaheuristic algorithm. J. Oper. Res. Soc. 2005, 56, 588–596. [Google Scholar] [CrossRef]
- Lee, D.S.; Vassiliadis, V.S.; Park, J.M. A novel threshold accepting meta-heuristic for the job-shop scheduling problem. Comput. Oper. Res. 2004, 31, 2199–2213. [Google Scholar]
- Lee, D.S.; Vassiliadis, V.S.; Park, J.M. List-based threshold-accepting algorithm for zero-wait scheduling of multiproduct batch plants. Ind. Eng. Chem. Res. 2002, 41, 6579–6588. [Google Scholar] [CrossRef]
- Ilhan, I.; Gökmen, G. A list-based simulated annealing algorithm with crossover operator for the traveling salesman problem. Neural Comput. Appl. 2022, 34, 7627–7652. [Google Scholar] [CrossRef]
- Cho, M. The knapsack problem and its applications to the cargo loading problem. Anal. Appl. Math. 2019, 48. [Google Scholar]
- Truong, T.K.; Li, K.; Xu, Y. Chemical reaction optimization with greedy strategy for the 0-1 knapsack problem. Appl. Soft Comput. J. 2013, 13, 1774–1780. [Google Scholar] [CrossRef]
- Chu, P.C.; Beasley, J.E. A genetic algorithm for the multidimensional knapsack problem. J. Heurist. 1998, 4, 63–86. [Google Scholar] [CrossRef]
- Dantzig, G.B. Discrete-variable extremum problems. Oper. Res. 1957, 5, 266–288. [Google Scholar] [CrossRef]
- Martello, S.; Pisinger, D.; Toth, P. Dynamic programming and strong bounds for the 0-1 knapsack problem. Manag. Sci. 1999, 45, 414–424. [Google Scholar] [CrossRef]
- Kolesar, P.J. A branch and bound algorithm for the knapsack problem. Manag. Sci. 1967, 13, 723–735. [Google Scholar] [CrossRef]
- Cabot, A.V. An enumeration algorithm for knapsack problems. Oper. Res. 1970, 18, 306–311. [Google Scholar] [CrossRef]
- Fister, I., Jr.; Yang, X.S.; Fister, I.; Brest, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013, arXiv:1307.4186. [Google Scholar]
- Yadav, R.K.; Gupta, H.; Jhingran, H.; Agarwal, A.; Gupta, A. An Enhanced Genetic Algorithm to Solve 0/1 Knapsack Problem. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 2017, 15, 150–154. [Google Scholar]
- Alzaqebah, A.; Abu-Shareha, A.A. Ant Colony System Algorithm with Dynamic Pheromone Updating for 0/1 Knapsack Problem. Int. J. Intell. Syst. Appl. 2019, 11, 9. [Google Scholar] [CrossRef]
- Nguyen, P.; Wang, D.; Truong, T.K. A new hybrid particle swarm optimization and greedy for 0–1 knapsack problem. Indones. Electr. Eng. Comput. Sci. 2016, 1, 411–418. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, G.G.; Deb, S.; Lu, M.; Zhao, X.J. Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization. Neural Comput. Appl. 2015, 28, 1619–1634. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, J.; Wu, C.; Lu, M.; Zhao, X.J. Solving 0-1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation. Memetic Comput. 2016, 10, 135–150. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, G.G.; Dong, J.; Wang, L. Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem. Comput. Electr. Eng. 2018, 67, 454–468. [Google Scholar] [CrossRef]
- Bhattacharjee, K.K.; Sarmah, S.P. Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl. Soft Comput. 2014, 19, 252–263. [Google Scholar] [CrossRef]
- Ali, I.M.; Essam, D.; Kasmarik, K. An efficient differential evolution algorithm for solving 0–1 knapsack problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Truong, T.K.; Li, K.; Xu, Y.; Ouyang, A.; Nguyen, T.T. Solving 0-1 knapsack problem by artificial chemical reaction optimization algorithm with a greedy strategy. J. Intell. Fuzzy Syst. 2015, 28, 2179–2186. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, G.G.; Gao, X.Z. A Novel Hybrid Cuckoo Search Algorithm with Global Harmony Search for 0-1 Knapsack Problems. Int. J. Comput. Intell. Syst. 2016, 9, 1174–1190. [Google Scholar] [CrossRef]
- Kong, X.; Gao, L.; Ouyang, H.; Li, S. A simplified binary harmony search algorithm for large scale 0-1 knapsack problems. Expert Syst. Appl. 2015, 42, 5337–5355. [Google Scholar] [CrossRef]
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- Omran, M.G.; Mahdavi, M. Global-best harmony search. Appl. Math. Comput. 2008, 198, 643–656. [Google Scholar] [CrossRef]
- Wang, C.M.; Huang, Y.F. Self-adaptive harmony search algorithm for optimization. Expert Syst. Appl. 2010, 37, 2826–2837. [Google Scholar] [CrossRef]
- Zhan, S.H.; Zhang, Z.J.; Wang, L.J.; Zhong, Y.W. List-Based Simulated Annealing Algorithm with Hybrid Greedy Repair and Optimization Operator for 0-1 Knapsack Problem. IEEE Access 2018, 6, 54447–54458. [Google Scholar] [CrossRef]
- Zhan, S.; Wang, L.; Zhang, Z.; Zhong, Y. Noising methods with hybrid greedy repair operator for 0–1 knapsack problem. Memetic Comput. 2019, 12, 37–50. [Google Scholar] [CrossRef]
- Ervural, B.; Hakli, H. A binary reptile search algorithm based on transfer functions with a new stochastic repair method for 0–1 knapsack problems. Comput. Ind. Eng. 2023, 178, 109080. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Sallam, K.M.; Chakrabortty, R.K.; Ryan, M.J. BSMA: A novel metaheuristic algorithm for multi-dimensional knapsack problems: Method and comprehensive analysis. Comput. Ind. Eng. 2021, 159, 107469. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Mirjalili, S. A binary equilibrium optimization algorithm for 0–1 knapsack problems. Comput. Ind. Eng. 2021, 151, 106946. [Google Scholar] [CrossRef]
- Hakli, H. BinEHO: A new binary variant based on elephant herding optimization algorithm. Neural Comput. Appl. 2020, 32, 16971–16991. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, Y.; Lin, J. Hybrid greedy Genetic Algorithm for solving 0-1 knapsack problem. J. Comput. Appl. 2021, 41, 87. [Google Scholar]
- Pisinger, D. Where are the hard knapsack problems? Comput. Oper. Res. 2005, 32, 2271–2284. [Google Scholar]
- Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.K.; Ryan, M.; Mirjalili, S. New binary marine predators optimization algorithms for 0–1 knapsack problems. Comput. Ind. Eng. 2021, 151, 106949. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Pisinger, D. Instances of 0/1 Knapsack Problem. 2018. Available online: https://github.com/likr/kplib (accessed on 17 October 2024).
- Ezugwu, A.E.; Pillay, V.; Hirasen, D.; Sivanarain, K.; Govender, M. A comparative study of meta-heuristic optimization algorithms for 0–1 knapsack problem: Some initial results. IEEE Access 2019, 7, 43979–44001. [Google Scholar] [CrossRef]
Correlation | Weight | Value | Capacity c |
---|---|---|---|
Uncorrelated | rand (10, 100) | rand (10, 100) | 0.75 * sum of weights |
Weakly correlated | rand (10, 100) | rand ( 10, + 10) | 0.75 * sum of weights |
Strongly correlated | rand (10, 100) | + 10 | 0.75 * sum of weights |
Problem | BEO (2020) | BinEHO (2020) | BMPA (2021) | BinRSA (2023) | BSMA (2021) | BHHO (2019) | BTSA (2020) | BAOA (2021) | LBTA | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Instance | BKV | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | |||||||||||
P1 | KP_8a | 3,924,400 | 3,924,400.00 | 0.00 | 3,924,400.00 | 0.00 | 3,924,400.00 | 0.00 | 3,924,400.00 | 0.00 | 3,924,400.00 | 0.00 | 3,924,400.00 | 0.00 | 3,924,400.00 | 0.00 | 3,924,400.00 | 0.00 | 3,924,400.00 | 0.00 | |||||||||||
P2 | KP_8b | 3,813,669 | 3,813,669.00 | 0.00 | 3,813,669.00 | 0.00 | 3,813,669.00 | 0.00 | 3,813,669.00 | 0.00 | 3,813,669.00 | 0.00 | 3,813,669.00 | 0.00 | 3,801,149.00 | 3.28 × | 3,810,772.00 | 7.60 × | 3,813,669.00 | 0.00 | |||||||||||
P3 | KP_8c | 3,347,452 | 3,347,452.00 | 0.00 | 3,347,452.00 | 0.00 | 3,347,452.00 | 0.00 | 3,347,452.00 | 0.00 | 3,347,452.00 | 0.00 | 3,347,452.00 | 0.00 | 3,347,452.00 | 0.00 | 3,347,452.00 | 0.00 | 3,347,452.00 | 0.00 | |||||||||||
P4 | KP_8d | 4,187,707 | 4,187,707.00 | 0.00 | 4,187,707.00 | 0.00 | 4,187,707.00 | 0.00 | 4,187,707.00 | 0.00 | 4,187,707.00 | 0.00 | 4,187,707.00 | 0.00 | 4,187,707.00 | 0.00 | 4,187,707.00 | 0.00 | 4,187,707.00 | 0.00 | |||||||||||
P5 | KP_8e | 4,955,555 | 4,955,555.00 | 0.00 | 4,955,555.00 | 0.00 | 4,955,555.00 | 0.00 | 4,955,555.00 | 0.00 | 4,955,555.00 | 0.00 | 4,955,555.00 | 0.00 | 4,955,555.00 | 0.00 | 4,955,555.00 | 0.00 | 4,955,555.00 | 0.00 | |||||||||||
P6 | KP_12a | 5,688,887 | 5,688,887.00 | 0.00 | 5,688,757.34 | 2.28 × | 5,688,887.00 | 0.00 | 5,688,757.34 | 2.28 × | 5,688,887.00 | 0.00 | 5,688,887.00 | 0.00 | 5,682,416.00 | 1.14 × | 5,688,887.00 | 0.00 | 5,688,887.00 | 0.00 | |||||||||||
P7 | KP_12b | 6,498,597 | 6,498,597.00 | 0.00 | 6,498,597.00 | 0.00 | 6,498,597.00 | 0.00 | 6,498,597.00 | 0.00 | 6,498,597.00 | 0.00 | 6,496,784.00 | 2.79 × | 6,498,597.00 | 0.00 | 6,498,597.00 | 0.00 | 6,498,597.00 | 0.00 | |||||||||||
P8 | KP_12c | 5,170,626 | 5,170,626.00 | 0.00 | 5,170,626.00 | 0.00 | 5,170,626.00 | 0.00 | 5,170,626.00 | 0.00 | 5,170,626.00 | 0.00 | 5,170,626.00 | 0.00 | 5,170,626.00 | 0.00 | 5,170,626.00 | 0.00 | 5,170,626.00 | 0.00 | |||||||||||
P9 | KP_12d | 6,992,404 | 6,992,404.00 | 0.00 | 6,992,404.00 | 0.00 | 6,992,404.00 | 0.00 | 6,992,404.00 | 0.00 | 6,941,564.00 | 7.27 × | 6,941,564.00 | 7.27 × | 6,941,564.00 | 7.27 × | 6,939,908.00 | 7.51 × | 6,992,404.00 | 0.00 | |||||||||||
P10 | KP_12e | 5,337,472 | 5,337,472.00 | 0.00 | 5,337,472.00 | 0.00 | 5,337,472.00 | 0.00 | 5,337,472.00 | 0.00 | 5,337,472.00 | 0.00 | 5,337,472.00 | 0.00 | 5,337,472.00 | 0.00 | 5,337,472.00 | 0.00 | 5,337,472.00 | 0.00 | |||||||||||
P11 | KP_16a | 7,850,983 | 7,850,983.00 | 0.00 | 7,850,224.60 | 9.66 × | 7,850,983.00 | 0.00 | 7,850,983.00 | 0.00 | 7,850,983.00 | 0.00 | 7,850,983.00 | 0.00 | 7,831,459.00 | 2.49 × | 7,850,983.00 | 0.00 | 7,850,983.00 | 0.00 | |||||||||||
P12 | KP_16b | 9,352,998 | 9,352,998.00 | 0.00 | 9,352,998.00 | 0.00 | 9,352,998.00 | 0.00 | 9,352,998.00 | 0.00 | 9,352,998.00 | 0.00 | 9,352,998.00 | 0.00 | 9,332,841.00 | 2.16 × | 9,352,998.00 | 0.00 | 9,352,998.00 | 0.00 | |||||||||||
P13 | KP_16c | 9,151,147 | 9,151,147.00 | 0.00 | 9,151,147.00 | 0.00 | 9,151,147.00 | 0.00 | 9,151,147.00 | 0.00 | 9,151,147.00 | 0.00 | 9,140,752.50 | 1.14 × | 9,151,147.00 | 0.00 | 9,145,012.50 | 6.70 × | 9,151,147.00 | 0.00 | |||||||||||
P14 | KP_16d | 9,348,889 | 9,348,889.00 | 0.00 | 9,345,961.48 | 3.13 × | 9,348,889.00 | 0.00 | 9,348,889.00 | 0.00 | 9,348,889.00 | 0.00 | 9,348,889.00 | 0.00 | 9,348,889.00 | 0.00 | 9,348,889.00 | 0.00 | 9,348,889.00 | 0.00 | |||||||||||
P15 | KP_16e | 7,769,117 | 7,769,117.00 | 0.00 | 7,766,509.36 | 3.36 × | 7,769,117.00 | 0.00 | 7,769,117.00 | 0.00 | 7,769,117.00 | 0.00 | 7,769,117.00 | 0.00 | 7,762,520.00 | 8.49 × | 7,769,117.00 | 0.00 | 7,769,117.00 | 0.00 | |||||||||||
P16 | KP_20a | 10,727,049 | 10,727,049.00 | 0.00 | 10,727,049.00 | 0.00 | 10,727,049.00 | 0.00 | 10,727,049.00 | 0.00 | 10,727,049.00 | 0.00 | 10,727,049.00 | 0.00 | 10,727,049.00 | 0.00 | 10,716,101.00 | 1.02 × | 10,727,049.00 | 0.00 | |||||||||||
P17 | KP_20b | 9,818,261 | 9,818,261.00 | 0.00 | 9,818,261.00 | 0.00 | 9,818,261.00 | 0.00 | 9,818,261.00 | 0.00 | 9,818,261.00 | 0.00 | 9,818,261.00 | 0.00 | 9,814,002.00 | 4.34 × | 9,818,261.00 | 0.00 | 9,818,261.00 | 0.00 | |||||||||||
P18 | KP_20c | 10,714,023 | 10,714,023.00 | 0.00 | 10,713,587.70 | 4.06 × | 10,714,023.00 | 0.00 | 10,713,993.98 | 2.71 × | 10,714,023.00 | 0.00 | 10,713,149.00 | 8.16 × | 10,714,023.00 | 0.00 | 10,714,023.00 | 0.00 | 10,714,023.00 | 0.00 | |||||||||||
P19 | KP_20d | 8,929,156 | 8,929,156.00 | 0.00 | 8,929,156.00 | 0.00 | 8,929,156.00 | 0.00 | 8,928,880.80 | 3.08 × | 8,929,156.00 | 0.00 | 8,924,769.30 | 4.91 × | 8,929,156.00 | 0.00 | 8,927,679.40 | 1.65 × | 8,929,156.00 | 0.00 | |||||||||||
P20 | KP_20e | 9,357,969 | 9,357,969.00 | 0.00 | 9,357,751.44 | 2.32 × | 9,357,969.00 | 0.00 | 9,357,953.46 | 1.66 × | 9,357,969.00 | 0.00 | 9,357,969.00 | 0.00 | 9,357,969.00 | 0.00 | 9,357,969.00 | 0.00 | 9,357,969.00 | 0.00 | |||||||||||
P21 | KP_24a | 13,549,094 | 13,549,094.00 | 0.00 | 13,546,986.14 | 1.56 × | 13,549,094.00 | 0.00 | 13,549,094.00 | 0.00 | 13,549,094.00 | 0.00 | 13,546,249.00 | 2.10 × | 13,549,094.00 | 0.00 | 13,547,058.00 | 1.50 × | 13,549,094.00 | 0.00 | |||||||||||
P22 | KP_24b | 12,233,713 | 12,233,713.00 | 0.00 | 12,233,713.00 | 0.00 | 12,233,713.00 | 0.00 | 12,233,713.00 | 0.00 | 12,233,713.00 | 0.00 | 12,233,713.00 | 0.00 | 12,233,713.00 | 0.00 | 12,233,713.00 | 0.00 | 12,233,713.00 | 0.00 | |||||||||||
P23 | KP_24c | 12,448,780 | 12,448,780.00 | 0.00 | 12,448,780.00 | 0.00 | 12,448,780.00 | 0.00 | 12,448,780.00 | 0.00 | 12,448,780.00 | 0.00 | 12,448,780.00 | 0.00 | 12,448,780.00 | 0.00 | 12,448,780.00 | 0.00 | 12,448,780.00 | 0.00 | |||||||||||
P24 | KP_24d | 11,815,315 | 11,814,367.00 | 8.02 × | 11,810,682.68 | 3.92 × | 11,811,630.20 | 3.12 × | 11,814,367.48 | 8.02 × | 11,815,315.00 | 0.00 | 11,814,208.00 | 9.37 × | 11,814,108.00 | 1.02 × | 11,814,072.00 | 1.05 × | 11,815,315.00 | 0.00 | |||||||||||
P25 | KP_24e | 13,940,099 | 13,940,099.00 | 0.00 | 13,940,099.00 | 0.00 | 13,940,099.00 | 0.00 | 13,940,099.00 | 0.00 | 13,940,099.00 | 0.00 | 13,933,743.00 | 4.56 × | 13,940,099.00 | 0.00 | 13,938,971.00 | 8.09 × | 13,940,099.00 | 0.00 | |||||||||||
order | 24 | 17 | 24 | 20 | 24 | 17 | 17 | 17 | 25 | ||||||||||||||||||||||
rank | 2 | 9 | 4 | 5 | 3 | 7 | 8 | 6 | 1 |
IGA-SA (2019) | BinRSA (2023) | BSMA (2021) | BTSA (2020) | BAOA (2021) | BHHO (2019) | LBTA | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | BKV | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | Mean | Gap (%) | |||||||
KP1_100 | 9147 | 8575.00 | 6.25 | 9147.00 | 0.00 | 9147.00 | 0.00 | 9147.00 | 0.00 | 9147.00 | 0.00 | 9147.00 | 0.00 | 9147.00 | 0.00 | |||||||
KP1_200 | 11,238 | 8576.00 | 23.69 | 11,238.00 | 0.00 | 11,238.00 | 0.00 | 11,238.00 | 0.00 | 11,238.00 | 0.00 | 11,238.00 | 0.00 | 11,238.00 | 0.00 | |||||||
KP1_500 | 28,857 | 12,072.00 | 58.17 | 28,857.00 | 0.00 | 28,857.00 | 0.00 | 28,849.00 | 0.03 | 28,852.00 | 0.02 | 28,850.00 | 0.02 | 28,857.00 | 0.00 | |||||||
KP1_1000 | 54,503 | 14,563.00 | 73.28 | 54,503.00 | 0.00 | 54,503.00 | 0.00 | 53,301.00 | 2.21 | 53,574.00 | 1.70 | 53,396.00 | 2.03 | 54,503.00 | 0.00 | |||||||
KP1_2000 | 110,625 | 27,645.00 | 75.01 | 110,587.55 | 0.03 | 110,625.00 | 0.00 | 95,619.00 | 13.56 | 110,625.00 | 0.00 | 110,625.00 | 0.00 | 110,615.40 | 0.01 | |||||||
KP1_5000 | 276,457 | 49,306.00 | 82.17 | 276453.6 | 0.00 | 274,569.00 | 0.68 | 272,923.00 | 1.28 | 274,385.00 | 0.75 | 273,961.00 | 0.90 | 276,438.47 | 0.01 | |||||||
KP2_100 | 1514 | 1217.00 | 19.62 | 1514.00 | 0.00 | 1514.00 | 0.00 | 1514.00 | 0.00 | 1514.00 | 0.00 | 1514.00 | 0.00 | 1514.00 | 0.00 | |||||||
KP2_200 | 1634 | 1347.00 | 17.56 | 1634.00 | 0.00 | 1634.00 | 0.00 | 1634.00 | 0.00 | 1634.00 | 0.00 | 1634.00 | 0.00 | 1634.00 | 0.00 | |||||||
KP2_500 | 4566 | 3038.00 | 33.46 | 4557.5 | 0.19 | 4565.30 | 0.02 | 4537.20 | 0.63 | 4549.40 | 0.36 | 4518.70 | 1.04 | 4565.30 | 0.02 | |||||||
KP2_1000 | 9052 | 5435.00 | 39.96 | 9051.05 | 0.01 | 9052.00 | 0.00 | 8346.80 | 7.79 | 9052.00 | 0.00 | 8835.60 | 2.39 | 9052.00 | 0.00 | |||||||
KP2_2000 | 18,051 | 10,938.00 | 39.41 | 18,046.75 | 0.02 | 17,557.00 | 2.74 | 14,902.00 | 17.45 | 15,885.00 | 12.00 | 15,729.00 | 12.86 | 18,050.20 | 0.00 | |||||||
KP2_5000 | 44,356 | 27,387.00 | 38.26 | 44,353.15 | 0.01 | 44,312.00 | 0.10 | 42,972.00 | 3.12 | 44,206.00 | 0.34 | 43,276.00 | 2.43 | 44,352.83 | 0.01 | |||||||
KP3_100 | 2397 | 1481.00 | 38.21 | 2397.00 | 0.00 | 2397.00 | 0.00 | 2395.20 | 0.08 | 2396.50 | 0.02 | 2396.40 | 0.03 | 2397.00 | 0.00 | |||||||
KP3_200 | 2697 | 1495.00 | 44.57 | 2697.00 | 0.00 | 2697.00 | 0.00 | 2692.10 | 0.18 | 2695.10 | 0.07 | 2694.70 | 0.09 | 2697.00 | 0.00 | |||||||
KP3_500 | 7117 | 3412.00 | 52.06 | 7117.00 | 0.00 | 7117.00 | 0.00 | 6999.50 | 1.65 | 7117.00 | 0.00 | 7117.00 | 0.00 | 7117.00 | 0.00 | |||||||
KP3_1000 | 14,390 | 5589.00 | 61.16 | 14,390.00 | 0.00 | 14,390.00 | 0.00 | 14,191.00 | 1.38 | 14,279.00 | 0.77 | 14,225.00 | 1.15 | 14,390.00 | 0.00 | |||||||
KP3_2000 | 28,919 | 10,818.00 | 62.59 | 28,919.00 | 0.00 | 28,919.00 | 0.00 | 28,919.00 | 0.00 | 28,597.00 | 1.11 | 28,657.00 | 0.91 | 28,919.00 | 0.00 | |||||||
KP3_5000 | 72,505 | 27,304.00 | 62.34 | 72,505.00 | 0.00 | 72,075.00 | 0.59 | 71,018.00 | 2.05 | 71,579.00 | 1.28 | 71,826.00 | 0.94 | 72,487.83 | 0.02 | |||||||
order | 0 | 14 | 13 | 5 | 7 | 6 | 14 | |||||||||||||||
rank | 7 | 3 | 2 | 6 | 4 | 5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Lin, K.; Lin, X.; Lin, J. List-Based Threshold Accepting Algorithm with Improved Neighbor Operator for 0–1 Knapsack Problem. Algorithms 2024, 17, 478. https://doi.org/10.3390/a17110478
Wu L, Lin K, Lin X, Lin J. List-Based Threshold Accepting Algorithm with Improved Neighbor Operator for 0–1 Knapsack Problem. Algorithms. 2024; 17(11):478. https://doi.org/10.3390/a17110478
Chicago/Turabian StyleWu, Liangcheng, Kai Lin, Xiaoyu Lin, and Juan Lin. 2024. "List-Based Threshold Accepting Algorithm with Improved Neighbor Operator for 0–1 Knapsack Problem" Algorithms 17, no. 11: 478. https://doi.org/10.3390/a17110478
APA StyleWu, L., Lin, K., Lin, X., & Lin, J. (2024). List-Based Threshold Accepting Algorithm with Improved Neighbor Operator for 0–1 Knapsack Problem. Algorithms, 17(11), 478. https://doi.org/10.3390/a17110478