Employing a Convolutional Neural Network to Classify Sleep Stages from EEG Signals Using Feature Reduction Techniques
Abstract
:1. Introduction
Research Questions
- With what deep learning model should researchers start with EEG analysis? Furthermore, improving the feature selection methods that work well can improve sleep stage classification accuracy. By providing researchers with the necessary resources and information, our work helps them effectively navigate the subject of deep learning and establish a strong foundation in it.
- Which major EEG datasets are the best places for academics to begin their EEG-DL research? This paper offers a perceptive summary of recent developments, highlighting well-known datasets and the DL techniques that go along with them. By responding to these research questions, researchers may remain ahead of the curve in their area and uncover interesting possibilities for their studies by staying up to speed with cutting-edge research directions.
2. Literature Survey
3. The Proposed System Architecture
4. Methodology and Algorithm Explanation
4.1. Dataset Description
4.2. Data Preprocessing Phase
4.2.1. Dataset Splitting
4.2.2. Dataset Scaling
4.3. Feature Selection Phase
4.3.1. Select Features Based on Mutual Information (MI)
4.3.2. Select Features Based on ANOVA
4.4. Classifying Features Using Convolution Neural Network (CNN)
- Input layer: The input of the 1D-CNN is a sequence of EEG signal samples recorded from a single electrode channel. Each sample represents the electric activity measured at a specific point in time.
- Convolution layer: The convolutional layers of the network apply convolutional filters to the input EEG signal. These filters move over the input signal, extracting local patterns and characteristics at varying temporal scales. Each filter looks for specific patterns in the EEG signal, like oscillatory components or transient events.
- Pooling Layers: Optional pooling layers can be added after convolutional layers to downscale the feature maps generated by the convolutional layers. Pooling reduces the dimensionality of feature maps while keeping crucial information, resulting in a more computationally efficient network and less overfitting.
- Activation Functions: Non-linear activation functions, such as Leaky ReLU (Rectified Linear Unit), are added to the output of convolutional and pooling layers to bring nonlinearity into the network and allow it to understand complicated data correlations.
- Fully Connected Layers: After processing the EEG data with convolutional and pooling layers, the feature maps are flattened and sent through one or more fully connected layers. These layers conduct high-level feature collection and manipulation, allowing the network to acquire discriminative representations for the given task.
5. Results and Discussion
5.1. Evaluation Model
5.2. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Phan, H.; Mikkelsen, K.; Chén, O.Y.; Koch, P.; Mertins, A.; De Vos, M. Sleep Transformer: Automatic Sleep Staging with Interpretability and Uncertainty Quantification. IEEE Trans. Biomed. Eng. 2022, 69, 2456–2467. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.R.; Rithesh, A.; Josh, P.; Raj, B.K.; John, V.; Prasad, D.S. Sleep Track: Automated Detection and Classification of Sleep Stages. E3S Web Conf. 2023, 430, 01020. [Google Scholar] [CrossRef]
- Almutairi, H.; Hassan, G.M.; Datta, A. Classification of Obstructive Sleep Apnoea from Single-Lead ECG Signals Using Convolutional Neural and Long Short Term Memory Networks. Biomed. Signal Process. Control 2021, 69, 102906. [Google Scholar] [CrossRef]
- Dauvilliers, Y.; Schenck, C.H.; Postuma, R.B.; Iranzo, A.; Luppi, P.H.; Plazzi, G.; Montplaisir, J.; Boeve, B. REM sleep behaviour disorder. Nat. Rev. Dis. Primers 2018, 4, 19. [Google Scholar] [CrossRef]
- Almutairi, H.; Hassan, G.; Datta, A. Classification of sleep stages from EEG, EOG and EMG signals by SSNet. arXiv 2023, arXiv:2307.05373v1. [Google Scholar]
- Peever, J.; Fuller, P.M. The Biology of REM Sleep. Curr. Biol. 2017, 27, R1237–R1248. [Google Scholar] [CrossRef] [PubMed]
- Timplalexis, C.; Diamantaras, K.; Chouvarda, I. Classification of Sleep Stages for Healthy Subjects and Patients with Minor Sleep Disorders. In Proceedings of the IEEE 19th International Conference on Bioinformatics and Bioengineering, Athens, Greece, 28–30 October 2019. [Google Scholar]
- Faust, O.; Razaghi, H.; Barika, R.; Ciaccio, E.J.; Acharya, U.R. A review of automated sleep stage scoring based on physiological signals for the new millennia. Comput. Methods Programs Biomed. 2019, 176, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Sri, T.R.; Madala, A.J.; Duddukuru, S.L.; Reddipalli, R.; Polasi, P.K. A Systematic Review on Deep Learning Models for Sleep Stage Classification. In Proceedings of the 6th International Conference on Trends in Electronics and Informatics, Tirunelveli, India, 28–30 April 2022. [Google Scholar]
- Fernandez-Blanco, E.; Rivero, D.; Pazos, A. EEG Signal Processing with Separable Convolutional Neural Network for Automatic Scoring of Sleeping Stage. Neurocomputing 2020, 410, 220–228. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, X.; Liu, Y.; Liu, H. A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model. Biomed. Signal Process. Control 2021, 68, 102581. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, J.; Du, B.; Yuan, Z. Self-supervised contrastive learning for EEG-based sleep staging. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Virtual, 18–22 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–8. [Google Scholar]
- Yildirim, O.; Baloglu, U.B.; Acharya, U.R. A deep learning model for automated sleep stages classification using PSG signals. Int. J. Environ. Res. Public Health 2019, 16, 599. [Google Scholar] [CrossRef]
- Rajbhandari, E.; Alsadoon, A.; Prasad, P.; Seher, I.; Nguyen, T.Q.V.; Pham, D.T.H. A novel solution of enhanced loss function using deep learning in sleep stage classification: Predict and diagnose patients with sleep disorders. Multimed. Tools Appl. 2021, 80, 11607–11630. [Google Scholar] [CrossRef]
- Mousavi, Z.; Rezaii, T.Y.; Sheykhivand, S.; Farzamnia, A.; Razavi, S. Deep convolutional neural network for classification of sleep stages from single-channel EEG signals. J. Neurosci. Methods 2019, 324, 108312. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Luo, W.; Yu, F. Convolution-and attention-based neural network for automated sleep stage classification. Int. J. Environ. Res. Public Health 2020, 17, 4152. [Google Scholar] [CrossRef] [PubMed]
- Santaji, S.; Desai, V. Analysis of EEG Signal to Classify Sleep Stages Using Machine Learning. Sleep Vigil. 2020, 4, 145–152. [Google Scholar] [CrossRef]
- Cui, Z.; Zheng, X.; Shao, X.; Cui, L. Automatic sleep stage classification based on convolutional neural network and fine-grained segments. Complexity 2018, 2018, 9248410. [Google Scholar] [CrossRef]
- Phan, H.; Andreotti, F.; Cooray, N.; Chen, O.Y.; De Vos, M. Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Trans. Biomed. Eng. 2019, 66, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S.K.; Kondaveeti, H.K.; Sreeja, S.R.; Madhani, H.; Rajput, N.; Swain, D. A Deep Learning Approach to Automated Sleep Stages Classification Using Multi-Modal Signals. Procedia Comput. Sci. 2023, 218, 867–876. [Google Scholar] [CrossRef]
- Lee, M.; Kwak, H.G.; Kim, H.J.; Won, D.O.; Lee, S.W. SeriesSleepNet: An EEG time series model with partial data augmentation for automatic sleep stage scoring. Front. Physiol. 2023, 14, 1188678. [Google Scholar] [CrossRef]
- Masad, I.; Alqudah, A.; Qazan, S. Automatic classification of sleep stages using EEG signals and convolutional neural networks. PLoS ONE 2024, 19, e0297582. [Google Scholar] [CrossRef]
- Al-Salman, W.; Li, Y.; Oudah, A.Y.; Almaged, S. Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms. Neurosci. Res. 2023, 188, 51–67. [Google Scholar] [CrossRef]
- Kadhim, A. An evaluation of preprocessing techniques for text classification. Int. J. Comput. Sci. Inf. Secur. 2018, 16, 1947–5500. [Google Scholar]
- Kubinski, R.; Djamen-Kepaou, J.Y.; Zhanabaev, T.; Hernandez-Garcia, A.; Bauer, S.; Hildebrand, F.; Korcsmaros, T.; Karam, S.; Jantchou, P.; Kafi, K.; et al. Benchmark of data processing methods and machine learning models for gut microbiome-based diagnosis of infammatory bowel disease. Front. Genet. 2022, 13, 784397. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.; Di Lecce, V. Data preprocessing impact on machine learning algorithm performance. Open Comput. Sci. 2023, 13, 20220278. [Google Scholar] [CrossRef]
- Vrigazova, B. The Proportion for Splitting Data into Training and Test Set for the Bootstrap in Classification Problems. Bus. Syst. Res. 2021, 12, 228–242. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Ly, H.-B.; Ho, L.S.; Al-Ansari, N.; Van Le, H.; Tran, V.Q.; Prakash, I.; Pham, B.T. Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil. Math. Probl. Eng. 2021, 2021, 4832864. [Google Scholar] [CrossRef]
- Muraina, I. Ideal Dataset Splitting Ratios in Machine Learning Algorithms: General Concerns for Data Scientists and Data Analysts. In Proceedings of the 7th International Mardin Artuklu Scientific Researches Conference, Mardin, Turkey, 13–15 December 2022. [Google Scholar]
- Dzierżak, R. Comparison of the Influence of Standardization and Normalization of Data on the Effectiveness of Spongy Tissue Texture Classification. Inform. Autom. Pomiary W Gospod. I Ochr. Srodowiska 2019, 9, 66–69. [Google Scholar] [CrossRef]
- Raju, V.N.G.; Lakshmi, K.P.; Jain, V.M.; Kalidindi, A.; Padma, V. Study the Influence of Normalization/Transformation process on the Accuracy of Supervised Classification. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; IEEE: New York, NY, USA, 2020; pp. 729–735. [Google Scholar]
- de Amorima, L.; Cavalcantia, G.; Cruz, R. The choice of scaling technique matters for classification performance. arXiv 2022, arXiv:2212.12343v1. [Google Scholar] [CrossRef]
- da Costa, N.L.; de Lima, M.D.; Barbosa, R. Analysis and improvements on feature selection methods based on artificial neural network weights. Appl. Soft Comput. 2022, 127, 109395. [Google Scholar] [CrossRef]
- Hossain, M.; Islam, M. A novel hybrid feature selection and ensemble-based machine learning approach for botnet detection. Sci. Rep. 2023, 13, 21207. [Google Scholar] [CrossRef]
- Barraza, N.; Moro, S.; Ferreyra, M.; de la Peña, A. Mutual information and sensitivity analysis for feature selection in customer targeting: A comparative study. J. Inf. Sci. 2019, 45, 53–67. [Google Scholar] [CrossRef]
- Macedo, F.; Valadas, R.; Carrasquinha, E.; Oliveira, M. Feature selection using Decomposed Mutual Information Maximization. Neurocomputing 2022, 513, 215–232. [Google Scholar] [CrossRef]
- Pereira, G.; dos Santos, M.; Carvalho, A. Evaluating Meta-Feature Selection for the Algorithm Recommendation Problem. arXiv 2021, arXiv:2106.03954v2. [Google Scholar]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Ahmad, J.; Farman, H.; Jan, Z. Deep learning methods and applications. In Deep Learning: Convergence to Big Data Analytics; Springer Briefs in Computer Science; Springer: Singapore, 2019; pp. 31–42. [Google Scholar]
- Mattioli, F.; Porcaro, C.; Baldassarre, G. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. J. Neural Eng. 2022, 18, 066053. [Google Scholar] [CrossRef]
- Azizjon, M.; Jumabek, A.; Kim, W. 1D CNN based network intrusion detection with normalization on imbalanced data. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 218–224. [Google Scholar]
- Qazi, E.; Almorjan, A.; Zia, T. A One-Dimensional Convolutional Neural Network (1D-CNN) Based Deep Learning System for Network Intrusion Detection. Appl. Sci. 2022, 12, 7986. [Google Scholar] [CrossRef]
- Singh, K. 1D-CNN based Model for Classification and Analysis of Network Attacks. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 604–613. [Google Scholar] [CrossRef]
- Goodwin, M.; Halvorsen, K.T.; Jiao, L.; Knausgård, K.M.; Martin, A.H.; Moyano, M.; Oomen, R.A.; Rasmussen, J.H.; Sørdalen, T.K.; Thorbjørnsen, S.H. Unlocking the potential of deep learning for marine ecology: Overview, applications, and outlook. ICES J. Mar. Sci. 2022, 79, 319–336. [Google Scholar] [CrossRef]
Sleep Stage | Characteristic Frequency |
---|---|
W | Alpha (8–12 Hz) |
N1 | Theta (4–8 Hz) |
N2 | Spindle (12–15 Hz) |
N3 | Delta (0.5–4 Hz) |
REM | Alpha (8–12 Hz) |
Theta (4–8 Hz) |
Architecture | Year | Dataset | Input Signal | Accuracy |
---|---|---|---|---|
1D-CNN | 2019 | Sleep-Edfx | Electroencephalogram (EEG), Electrooculogram (EOG) | 94.24% for 3 stages 90.98% for 5 stages |
1D-CNN | 2021 | Sleep-Edf Sleep-EdfX ISRUC-Sleep | Electroencephalogram (EEG) | 87.67% |
CNN | 2019 | Sleep-Edf | Electroencephalogram (EEG) | 90% |
1D-CNN | 2020 | Sleep-Edf Sleep-EdfX | Polysomnography (PSG) | 93.7% 82.80% |
DT | 2020 | Sleep-Edf | Electroencephalogram (EEG) | DT = 93.80% |
SVM | SVM = 94.14% | |||
RF | RF = 97.8% | |||
2D-CNN | 2018 | ISRUC-Sleep | Electroencephalogram (EEG) | 92% |
2D-CNN | 2019 | Sleep-Edf | Fast Fourier Transform (FFT) | 83.6% |
CNN + LSTM | 2023 | Sleep-Edf | Electroencephalogram (EEG) | 87.4% |
CNN + LSTM | 2023 | Sleep-Edf SHHS | Electroencephalogram (EEG) | 87% |
CNN | 2024 | CWT | Electroencephalogram (EEG) | 99.39% |
NO. | Layer Type | Filters | Size/Stride | Activation Function | #Param |
---|---|---|---|---|---|
1 | Convolutional | 16 | 3/1 | ــ | 64 |
2 | Max Pooling | ــ | ــ | ــ | 0 |
3 | Leaky ReLU | ــ | ــ | ــ | 0 |
4 | Convolutional | 32 | 3/1 | ــ | 1568 |
5 | Max Pooling | ــ | ــ | ــ | 0 |
6 | Leaky ReLU | ــ | ــ | ــ | 0 |
7 | Convolutional | 64 | 3/1 | ــ | 6208 |
8 | Max Pooling | ــ | ــ | ــ | 0 |
9 | Leaky ReLU | ــ | ــ | ــ | 0 |
10 | Convolutional | 64 | 3/1 | ــ | 12,352 |
11 | Max Pooling | ــ | ــ | ــ | 0 |
12 | Leaky ReLU | ــ | ــ | ــ | 0 |
13 | Dense | 32 | ــ | Linear | 4160 |
14 | Convolutional | 32 | 3/1 | ــ | 6176 |
15 | Max Pooling | ــ | ــ | ــ | 0 |
16 | Leaky ReLU | ــ | ــ | ــ | 0 |
17 | Convolutional | 32 | 3/1 | ــ | 3104 |
18 | Max Pooling | ــ | ــ | ــ | 0 |
19 | Leaky ReLU | ــ | ــ | ــ | 0 |
20 | Dense | 32 | ــ | Linear | 1056 |
21 | Convolutional | 16 | 3/1 | ــ | 1552 |
22 | Max Pooling | ــ | ــ | ــ | 0 |
23 | Leaky ReLU | ــ | ــ | ــ | 0 |
24 | Convolutional | 60 | 3/1 | ــ | 2940 |
25 | Flatten | ــ | ــ | ــ | 0 |
26 | Dense | 32 | ــ | Softmax | 610,805 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, M.R.; Sagheer, A.M. Employing a Convolutional Neural Network to Classify Sleep Stages from EEG Signals Using Feature Reduction Techniques. Algorithms 2024, 17, 229. https://doi.org/10.3390/a17060229
Mohammed MR, Sagheer AM. Employing a Convolutional Neural Network to Classify Sleep Stages from EEG Signals Using Feature Reduction Techniques. Algorithms. 2024; 17(6):229. https://doi.org/10.3390/a17060229
Chicago/Turabian StyleMohammed, Maadh Rajaa, and Ali Makki Sagheer. 2024. "Employing a Convolutional Neural Network to Classify Sleep Stages from EEG Signals Using Feature Reduction Techniques" Algorithms 17, no. 6: 229. https://doi.org/10.3390/a17060229
APA StyleMohammed, M. R., & Sagheer, A. M. (2024). Employing a Convolutional Neural Network to Classify Sleep Stages from EEG Signals Using Feature Reduction Techniques. Algorithms, 17(6), 229. https://doi.org/10.3390/a17060229