The Quest for the Application of Artificial Intelligence to Whole Slide Imaging: Unique Prospective from New Advanced Tools
Abstract
:1. Introduction
2. Whole Slide Imaging
3. Artificial Intelligence, Machine Learning, and Deep Learning in Digital Pathology
4. New Tools for Digital Pathology in the Era of Artificial Intelligence
4.1. QuPath
4.2. DSA and HistomicsTK
4.3. HistoQC
4.4. MONAI
4.5. PathML
4.6. Histolab
4.7. SliDL
4.8. SISH
4.9. Other Tools
5. Discussion
5.1. Main Findings and Limitations
5.2. Comparison with Traditional Methods and Impact on Pathologists
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, L.; Long, L.R.; Antani, S.; Thoma, G.R. Histology Image Analysis for Carcinoma Detection and Grading. Comput. Methods Programs Biomed. 2012, 107, 538–556. [Google Scholar] [CrossRef] [PubMed]
- Seibert, J.A. One Hundred Years of Medical Diagnostic Imaging Technology. Health Phys. 1995, 69, 695. [Google Scholar] [CrossRef] [PubMed]
- Muthuswamy, S.K. Self-Organization in Cancer: Implications for Histopathology, Cancer Cell Biology, and Metastasis. Cancer Cell 2021, 39, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J. Abstract SY01-03: The Gold Standard Cancer Diagnosis: Studies of Physician Variability, Interpretive Behavior, and the Impact of AI. Cancer Res. 2021, 81, SY01-03. [Google Scholar] [CrossRef]
- Elmore, J.G.; Longton, G.M.; Carney, P.A.; Geller, B.M.; Onega, T.; Tosteson, A.N.A.; Nelson, H.D.; Pepe, M.S.; Allison, K.H.; Schnitt, S.J.; et al. Diagnostic Concordance among Pathologists Interpreting Breast Biopsy Specimens. JAMA 2015, 313, 1122–1132. [Google Scholar] [CrossRef]
- Khened, M.; Kori, A.; Rajkumar, H.; Krishnamurthi, G.; Srinivasan, B. A Generalized Deep Learning Framework for Whole-Slide Image Segmentation and Analysis. Sci. Rep. 2021, 11, 11579. [Google Scholar] [CrossRef]
- Snead, D.R.J.; Tsang, Y.-W.; Meskiri, A.; Kimani, P.K.; Crossman, R.; Rajpoot, N.M.; Blessing, E.; Chen, K.; Gopalakrishnan, K.; Matthews, P.; et al. Validation of Digital Pathology Imaging for Primary Histopathological Diagnosis. Histopathology 2016, 68, 1063–1072. [Google Scholar] [CrossRef]
- Dimitriou, N.; Arandjelović, O.; Caie, P.D. Deep Learning for Whole Slide Image Analysis: An Overview. Front. Med. 2019, 6, 264. [Google Scholar] [CrossRef]
- Pantanowitz, L.; Sinard, J.H.; Henricks, W.H.; Fatheree, L.A.; Carter, A.B.; Contis, L.; Beckwith, B.A.; Evans, A.J.; Lal, A.; Parwani, A.V.; et al. Validating Whole Slide Imaging for Diagnostic Purposes in Pathology: Guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch. Pathol. Lab. Med. 2013, 137, 1710–1722. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Allows Marketing of First Whole Slide Imaging System for Digital Pathology. Available online: https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology (accessed on 13 May 2024).
- Hamilton, P.W.; Bankhead, P.; Wang, Y.; Hutchinson, R.; Kieran, D.; McArt, D.G.; James, J.; Salto-Tellez, M. Digital Pathology and Image Analysis in Tissue Biomarker Research. Methods 2014, 70, 59–73. [Google Scholar] [CrossRef]
- Caie, P.D.; Zhou, Y.; Turnbull, A.K.; Oniscu, A.; Harrison, D.J. Novel Histopathologic Feature Identified through Image Analysis Augments Stage II Colorectal Cancer Clinical Reporting. Oncotarget 2016, 7, 44381–44394. [Google Scholar] [CrossRef] [PubMed]
- Nearchou, I.P.; Lillard, K.; Gavriel, C.G.; Ueno, H.; Harrison, D.J.; Caie, P.D. Automated Analysis of Lymphocytic Infiltration, Tumor Budding, and Their Spatial Relationship Improves Prognostic Accuracy in Colorectal Cancer. Cancer Immunol. Res. 2019, 7, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Dimitriou, N.; Arandjelovic, O. Colorectal Cancer Outcome Prediction from H&E Whole Slide Images Using Machine Learning and Automatically Inferred Phenotype Profiles. arXiv 2019, arXiv:1902.03582. [Google Scholar]
- Shafi, S.; Parwani, A.V. Artificial Intelligence in Diagnostic Pathology. Diagn. Pathol. 2023, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Song, A.H.; Jaume, G.; Williamson, D.F.K.; Lu, M.Y.; Vaidya, A.; Miller, T.R.; Mahmood, F. Artificial Intelligence for Digital and Computational Pathology. Nat. Rev. Bioeng. 2023, 1, 930–949. [Google Scholar] [CrossRef]
- Cooper, M.; Ji, Z.; Krishnan, R.G. Machine Learning in Computational Histopathology: Challenges and Opportunities. Genes Chromosomes Cancer 2023, 62, 540–556. [Google Scholar] [CrossRef] [PubMed]
- van der Laak, J.; Litjens, G.; Ciompi, F. Deep Learning in Histopathology: The Path to the Clinic. Nat. Med. 2021, 27, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Al-Thelaya, K.; Gilal, N.U.; Alzubaidi, M.; Majeed, F.; Agus, M.; Schneider, J.; Househ, M. Applications of Discriminative and Deep Learning Feature Extraction Methods for Whole Slide Image Analysis: A Survey. J. Pathol. Inform. 2023, 14, 100335. [Google Scholar] [CrossRef] [PubMed]
- Pedraza, A.; Gonzalez, L.; Deniz, O.; Bueno, G. Deep Neural Networks for HER2 Grading of Whole Slide Images with Subclasses Levels. Algorithms 2024, 17, 97. [Google Scholar] [CrossRef]
- Soldatov, S.A.; Pashkov, D.M.; Guda, S.A.; Karnaukhov, N.S.; Guda, A.A.; Soldatov, A.V. Deep Learning Classification of Colorectal Lesions Based on Whole Slide Images. Algorithms 2022, 15, 398. [Google Scholar] [CrossRef]
- Kallipolitis, A.; Revelos, K.; Maglogiannis, I. Ensembling EfficientNets for the Classification and Interpretation of Histopathology Images. Algorithms 2021, 14, 278. [Google Scholar] [CrossRef]
- Fell, C.; Mohammadi, M.; Morrison, D.; Arandjelovic, O.; Caie, P.; Harris-Birtill, D. Reproducibility of Deep Learning in Digital Pathology Whole Slide Image Analysis. PLoS Digit. Health 2022, 1, e0000145. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.J.; Matek, C.; Boushehri, S.S.; Boxberg, M.; Lamm, L.; Sadafi, A.; Winter, D.J.E.; Marr, C.; Peng, T. Built to Last? Reproducibility and Reusability of Deep Learning Algorithms in Computational Pathology. Mod. Pathol. 2024, 37, 100350. [Google Scholar] [CrossRef] [PubMed]
- Ba, W.; Wang, S.; Shang, M.; Zhang, Z.; Wu, H.; Yu, C.; Xing, R.; Wang, W.; Wang, L.; Liu, C.; et al. Assessment of Deep Learning Assistance for the Pathological Diagnosis of Gastric Cancer. Mod. Pathol. 2022, 35, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Gupta, R.; Gupta, S. Whole Slide Imaging (WSI) in Pathology: Current Perspectives and Future Directions. J. Digit. Imaging 2020, 33, 1034–1040. [Google Scholar] [CrossRef]
- Yamashiro, K.; Taira, K.; Matsubayashi, S.; Azuma, M.; Okuyama, D.; Nakajima, M.; Takeda, H.; Suzuki, H.; Kawamura, N.; Wakao, F.; et al. Comparison between a Traditional Single Still Image and a Multiframe Video Image along the Z-Axis of the Same Microscopic Field of Interest in Cytology: Which Does Contribute to Telecytology? Diagn. Cytopathol. 2009, 37, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lv, T.; Sun, Y.; Liu, X.; Zeng, S.; Lv, X. High Throughput Slanted Scanning Whole Slide Imaging System for Digital Pathology. J. Biophotonics 2021, 14, e202000499. [Google Scholar] [CrossRef] [PubMed]
- Acs, B.; Rantalainen, M.; Hartman, J. Artificial Intelligence as the next Step towards Precision Pathology. J. Intern. Med. 2020, 288, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Mungle, T.; Tewary, S.; Das, D.K.; Arun, I.; Basak, B.; Agarwal, S.; Ahmed, R.; Chatterjee, S.; Chakraborty, C. MRF-ANN: A machine learning approach for automated ER scoring of breast cancer immunohistochemical images. J. Microsc. 2017, 267, 117–129. [Google Scholar] [CrossRef]
- Madabhushi, A.; Lee, G. Image Analysis and Machine Learning in Digital Pathology: Challenges and Opportunities. Med. Image Anal. 2016, 33, 170–175. [Google Scholar] [CrossRef]
- Lee, M. Recent Advancements in Deep Learning Using Whole Slide Imaging for Cancer Prognosis. Bioengineering 2023, 10, 897. [Google Scholar] [CrossRef] [PubMed]
- Raab, S.S.; Grzybicki, D.M. Anatomic Pathology Workload and Error. Am. J. Clin. Pathol. 2006, 125, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Humphries, M.P.; Maxwell, P.; Salto-Tellez, M. QuPath: The Global Impact of an Open Source Digital Pathology System. Comput. Struct. Biotechnol. J. 2021, 19, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.; Nogueira, C.; Marinho, L.C.; Velozo, G.; Sousa, J.; Silva, P.G.; Tavora, F. Computer-Assisted Tumor Grading, Validation of PD-L1 Scoring, and Quantification of CD8-Positive Immune Cell Density in Urothelial Carcinoma, a Visual Guide for Pathologists Using QuPath. Surg. Exp. Pathol. 2022, 5, 12. [Google Scholar] [CrossRef]
- Porter, R.J.; Din, S.; Bankhead, P.; Oniscu, A.; Arends, M.J. QuPath Algorithm Accurately Identifies MLH1-Deficient Inflammatory Bowel Disease-Associated Colorectal Cancers in a Tissue Microarray. Diagnostics 2023, 13, 1890. [Google Scholar] [CrossRef] [PubMed]
- Apaolaza, P.S.; Petropoulou, P.-I.; Rodriguez-Calvo, T. Whole-Slide Image Analysis of Human Pancreas Samples to Elucidate the Immunopathogenesis of Type 1 Diabetes Using the QuPath Software. Front. Mol. Biosci. 2021, 8, 689799. [Google Scholar] [CrossRef]
- Gutman, D.A.; Khalilia, M.; Lee, S.; Nalisnik, M.; Mullen, Z.; Beezley, J.; Chittajallu, D.R.; Manthey, D.; Cooper, L.A.D. The Digital Slide Archive: A Software Platform for Management, Integration, and Analysis of Histology for Cancer Research. Cancer Res. 2017, 77, e75–e78. [Google Scholar] [CrossRef] [PubMed]
- Verdicchio, M.; Brancato, V.; Cavaliere, C.; Isgrò, F.; Salvatore, M.; Aiello, M. A Pathomic Approach for Tumor-Infiltrating Lymphocytes Classification on Breast Cancer Digital Pathology Images. Heliyon 2023, 9, e14371. [Google Scholar] [CrossRef]
- Farris, A.B.; Vizcarra, J.; Amgad, M.; Donald Cooper, L.A.; Gutman, D.; Hogan, J. Image Analysis Pipeline for Renal Allograft Evaluation and Fibrosis Quantification. Kidney Int. Rep. 2021, 6, 1878–1887. [Google Scholar] [CrossRef]
- Amgad, M.; Atteya, L.A.; Hussein, H.; Mohammed, K.H.; Hafiz, E.; Elsebaie, M.A.T.; Alhusseiny, A.M.; AlMoslemany, M.A.; Elmatboly, A.M.; Pappalardo, P.A.; et al. NuCLS: A Scalable Crowdsourcing Approach and Dataset for Nucleus Classification and Segmentation in Breast Cancer. GigaScience 2022, 11, giac037. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, A.T.; Marx, G.A.; Koenigsberg, D.; Sawyer, M.; Iida, M.A.; Walker, J.M.; Richardson, T.E.; Campanella, G.; Attems, J.; McKee, A.C.; et al. Interpretable Deep Learning of Myelin Histopathology in Age-Related Cognitive Impairment. Acta Neuropathol. Commun. 2022, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Amgad, M.; Hodge, J.M.; Elsebaie, M.A.T.; Bodelon, C.; Puvanesarajah, S.; Gutman, D.A.; Siziopikou, K.P.; Goldstein, J.A.; Gaudet, M.M.; Teras, L.R.; et al. A Population-Level Digital Histologic Biomarker for Enhanced Prognosis of Invasive Breast Cancer. Nat. Med. 2024, 30, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Janowczyk, A.; Zuo, R.; Gilmore, H.; Feldman, M.; Madabhushi, A. HistoQC: An Open-Source Quality Control Tool for Digital Pathology Slides. JCO Clin. Cancer Inform. 2019, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.S.; Gretser, S.; Heckmann, L.E.; Ziegler, P.K.; Walter, B.; Reis, H.; Bankov, K.; Becker, S.; Triesch, J.; Wild, P.J.; et al. How to Learn with Intentional Mistakes: NoisyEnsembles to Overcome Poor Tissue Quality for Deep Learning in Computational Pathology. Front. Med. 2022, 9, 959068. [Google Scholar] [CrossRef] [PubMed]
- Santo, B.A.; Rosenberg, A.Z.; Sarder, P. Artificial Intelligence Driven Next-Generation Renal Histomorphometry. Curr. Opin. Nephrol. Hypertens. 2020, 29, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zee, J.; Janowczyk, A.R.; Rubin, J.; Toro, P.; Lafata, K.J.; Mariani, L.H.; Holzman, L.B.; Hodgin, J.B.; Madabhushi, A.; et al. Clinical Relevance of Computationally Derived Attributes of Peritubular Capillaries from Kidney Biopsies. Kidney360 2023, 4, 648. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.J.; Li, W.; Brown, R.; Ma, N.; Kerfoot, E.; Wang, Y.; Murrey, B.; Myronenko, A.; Zhao, C.; Yang, D.; et al. MONAI: An Open-Source Framework for Deep Learning in Healthcare. arXiv 2022, arXiv:2211.02701. [Google Scholar]
- Ranzini, M.B.M.; Fidon, L.; Ourselin, S.; Modat, M.; Vercauteren, T. MONAIfbs: MONAI-Based Fetal Brain MRI Deep Learning Segmentation. arXiv 2021, arXiv:2103.13314. [Google Scholar]
- Hardie, R.C.; Trout, A.T.; Dillman, J.R.; Narayanan, B.N.; Tanimoto, A.A. Performance Analysis in Children of Traditional and Deep Learning CT Lung Nodule Computer-Aided Detection Systems Trained on Adults. Am. J. Roentgenol. 2024, 222, e2330345. [Google Scholar] [CrossRef]
- Ifty, M.A.H.; Shajid, M.d.S.S. Implementation of Liver Segmentation from Computed Tomography (CT) Images Using Deep Learning. In Proceedings of the 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), Chittagong, Bangladesh, 23–25 February 2023; pp. 1–6. [Google Scholar]
- Rosenthal, J.; Carelli, R.; Omar, M.; Brundage, D.; Halbert, E.; Nyman, J.; Hari, S.N.; Van Allen, E.M.; Marchionni, L.; Umeton, R.; et al. Building Tools for Machine Learning and Artificial Intelligence in Cancer Research: Best Practices and a Case Study with the PathML Toolkit for Computational Pathology. Mol. Cancer Res. 2022, 20, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Pakula, H.; Omar, M.; Carelli, R.; Pederzoli, F.; Fanelli, G.N.; Pannellini, T.; Socciarelli, F.; Van Emmenis, L.; Rodrigues, S.; Fidalgo-Ribeiro, C.; et al. Distinct Mesenchymal Cell States Mediate Prostate Cancer Progression. Nat. Commun. 2024, 15, 363. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Lamberti, G.; Puchala, S.R.; Mahadevan, N.R.; Lin, J.-R.; Alessi, J.V.; Chowdhury, A.; Li, Y.Y.; Wang, X.; Spurr, L.; et al. Genomic and Immunophenotypic Landscape of Acquired Resistance to PD-(L)1 Blockade in Non–Small-Cell Lung Cancer. JCO 2024, 42, 1311–1321. [Google Scholar] [CrossRef]
- Marcolini, A.; Bussola, N.; Arbitrio, E.; Amgad, M.; Jurman, G.; Furlanello, C. Histolab: A Python Library for Reproducible Digital Pathology Preprocessing with Automated Testing. SoftwareX 2022, 20, 101237. [Google Scholar] [CrossRef]
- Schreiber, B.A.; Denholm, J.; Jaeckle, F.; Arends, M.J.; Branson, K.M.; Schönlieb, C.-B.; Soilleux, E.J. Rapid Artefact Removal and H&E-Stained Tissue Segmentation. Sci. Rep. 2024, 14, 309. [Google Scholar] [CrossRef] [PubMed]
- Dia, A.K.; Ebrahimpour, L.; Yolchuyeva, S.; Tonneau, M.; Lamaze, F.C.; Orain, M.; Coulombe, F.; Malo, J.; Belkaid, W.; Routy, B.; et al. The Cross-Scale Association between Pathomics and Radiomics Features in Immunotherapy-Treated NSCLC Patients: A Preliminary Study. Cancers 2024, 16, 348. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.G.; Orchard, W.R.; Gehrung, M.; Markowetz, F. SliDL: A Toolbox for Processing Whole-Slide Images in Deep Learning. PLoS ONE 2023, 18, e0289499. [Google Scholar] [CrossRef] [PubMed]
- Berman, A. Deep Learning on Whole-Slide Images for Early Detection and Risk Prediction of Oesophageal Cancer. 2023. Available online: https://www.repository.cam.ac.uk/items/6232b9a4-b07e-4136-a122-0cedd29c7660 (accessed on 21 May 2024).
- Chen, C.; Lu, M.Y.; Williamson, D.F.K.; Chen, T.Y.; Schaumberg, A.J.; Mahmood, F. Fast and Scalable Search of Whole-Slide Images via Self-Supervised Deep Learning. Nat. Biomed. Eng. 2022, 6, 1420–1434. [Google Scholar] [CrossRef] [PubMed]
- Self-Teaching AI Uses Pathology Images to Diagnose Rare Diseases—ProQuest. Available online: https://www.proquest.com/openview/931feb4717fabdbc3dee0011f6688899/1?cbl=2037571&pq-origsite=gscholar&parentSessionId=mQ17BOyv7aVP8EPDIEdN5RSin4BVo29PaNuGE82lYgk%3D (accessed on 20 May 2024).
- Lahr, I.; Alfasly, S.; Nejat, P.; Khan, J.; Kottom, L.; Kumbhar, V.; Alsaafin, A.; Shafique, A.; Hemati, S.; Alabtah, G.; et al. Analysis and Validation of Image Search Engines in Histopathology. arXiv 2024, arXiv:2401.03271. [Google Scholar]
- Yang, X.; Zhang, R.; Yang, Y.; Zhang, Y.; Chen, K. PathEX: Make Good Choice for Whole Slide Image Extraction. bioRxiv 2024. Available online: https://www.biorxiv.org/content/10.1101/2024.02.20.581147v1 (accessed on 6 June 2024).
- Jain, A.; Perdomo, D.; Nagururu, N.; Li, J.A.; Ward, B.K.; Lauer, A.M.; Creighton, F.X. SVPath: A Deep Learning Tool for Analysis of Stria Vascularis from Histology Slides. JARO 2024. Available online: https://www.springermedizin.de/svpath-a-deep-learning-tool-for-analysis-of-stria-vascularis-fro/27103458 (accessed on 6 June 2024).
- Dolezal, J.M.; Kochanny, S.; Dyer, E.; Ramesh, S.; Srisuwananukorn, A.; Sacco, M.; Howard, F.M.; Li, A.; Mohan, P.; Pearson, A.T. Slideflow: Deep Learning for Digital Histopathology with Real-Time Whole-Slide Visualization. BMC Bioinform. 2024, 25, 134. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Secrier, M. HistoMIL: A Python Package for Training Multiple Instance Learning Models on Histopathology Slides. iScience 2023, 26, 108073. [Google Scholar] [CrossRef]
- Plass, M.; Kargl, M.; Kiehl, T.-R.; Regitnig, P.; Geißler, C.; Evans, T.; Zerbe, N.; Carvalho, R.; Holzinger, A.; Müller, H. Explainability and Causability in Digital Pathology. J. Pathol. Clin. Res. 2023, 9, 251–260. [Google Scholar] [CrossRef]
- Vrudhula, A.; Kwan, A.C.; Ouyang, D.; Cheng, S. Machine Learning and Bias in Medical Imaging: Opportunities and Challenges. Circ. Cardiovasc. Imaging 2024, 17, e015495. [Google Scholar] [CrossRef]
- Larrazabal, A.J.; Nieto, N.; Peterson, V.; Milone, D.H.; Ferrante, E. Gender Imbalance in Medical Imaging Datasets Produces Biased Classifiers for Computer-Aided Diagnosis. Proc. Natl. Acad. Sci. USA 2020, 117, 12592–12594. [Google Scholar] [CrossRef]
- Lu, M.Y.; Williamson, D.F.K.; Chen, T.Y.; Chen, R.J.; Barbieri, M.; Mahmood, F. Data-Efficient and Weakly Supervised Computational Pathology on Whole-Slide Images. Nat. Biomed. Eng. 2021, 5, 555–570. [Google Scholar] [CrossRef]
- Chen, R.J.; Lu, M.Y.; Wang, J.; Williamson, D.F.K.; Rodig, S.J.; Lindeman, N.I.; Mahmood, F. Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis. IEEE Trans. Med. Imaging 2022, 41, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Werneck Krauss Silva, V.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs, T.J. Clinical-Grade Computational Pathology Using Weakly Supervised Deep Learning on Whole Slide Images. Nat. Med. 2019, 25, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-Based Pathology Predicts Origins for Cancers of Unknown Primary. Nature 2021, 594, 106–110. [Google Scholar] [CrossRef]
- Komura, D.; Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Comput. Struct. Biotechnol. J. 2018, 16, 34–42. [Google Scholar] [CrossRef]
- Naik, D.A.; Mohana, R.M.; Ramu, G.; Lalitha, Y.S.; SureshKumar, M.; Raghavender, K.V. Analyzing Histopathological Images by Using Machine Learning Techniques. Appl. Nanosci. 2023, 13, 2507–2513. [Google Scholar] [CrossRef]
- Howard, A.G. Some Improvements on Deep Convolutional Neural Network Based Image Classification. arXiv 2013, arXiv:1312.5402. [Google Scholar]
Name | Link | License | Citations Original Work |
---|---|---|---|
QuPath | https://qupath.github.io/ (accessed on 21 May 2024) | Open source | 4731 |
HistomicsTK | https://github.com/DigitalSlideArchive/HistomicsTK (accessed on 21 May 2024) | Open source | 152 |
HistoQC | https://github.com/choosehappy/HistoQC (accessed on 21 May 2024) | Open source | 246 |
MONAI | https://monai.io/ (accessed on 21 May 2024) | Open source | 246 |
PathML | https://pathml.org/ (accessed on 21 May 2024) | Open source | 15 |
Histolab | https://github.com/histolab/histolab (accessed on 21 May 2024) | Open source | 15 |
SliDL | https://github.com/markowetzlab/slidl-tutorial (accessed on 21 May 2024) | Open source | 3 |
SISH | https://github.com/mahmoodlab/SISH (accessed on 21 May 2024) | Open source | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faa, G.; Castagnola, M.; Didaci, L.; Coghe, F.; Scartozzi, M.; Saba, L.; Fraschini, M. The Quest for the Application of Artificial Intelligence to Whole Slide Imaging: Unique Prospective from New Advanced Tools. Algorithms 2024, 17, 254. https://doi.org/10.3390/a17060254
Faa G, Castagnola M, Didaci L, Coghe F, Scartozzi M, Saba L, Fraschini M. The Quest for the Application of Artificial Intelligence to Whole Slide Imaging: Unique Prospective from New Advanced Tools. Algorithms. 2024; 17(6):254. https://doi.org/10.3390/a17060254
Chicago/Turabian StyleFaa, Gavino, Massimo Castagnola, Luca Didaci, Fernando Coghe, Mario Scartozzi, Luca Saba, and Matteo Fraschini. 2024. "The Quest for the Application of Artificial Intelligence to Whole Slide Imaging: Unique Prospective from New Advanced Tools" Algorithms 17, no. 6: 254. https://doi.org/10.3390/a17060254
APA StyleFaa, G., Castagnola, M., Didaci, L., Coghe, F., Scartozzi, M., Saba, L., & Fraschini, M. (2024). The Quest for the Application of Artificial Intelligence to Whole Slide Imaging: Unique Prospective from New Advanced Tools. Algorithms, 17(6), 254. https://doi.org/10.3390/a17060254