Algorithm for Option Number Selection in Stochastic Paired Comparison Models
Abstract
:1. Introduction
2. The Investigated Models
3. Comparison of Models Allowing Different Options in Choices from a Theoretical Aspect
3.1. The Case of s = 2 and s + 2 = 4
- (A)
- Data are evaluable only in the two-option model.
- (B)
- Data are evaluable only in the four-option model.
- (C)
- Data are evaluable in both models.
- (D)
- Data are not evaluable in either model.
- C.2.1. For every nonempty partition of S and of the set {1, 2, …, n} (, ), there are two (not necessarily different) index pairs and , , , for which and . In other words, these subsets are connected in both directions.
- C.4.1. Both types of edges are included in the graph .
- C.4.2. For every nonempty partition of S and (, ), there are two (not necessarily different) index pairs and , , , for which
- C.4.3. There exists a cycle in the graph along the ‘slightly better’ and ‘much better’ edges which contains at least one ‘much better’ edge. In other words, there exists a cycle (), for some , where are distinct, for which or , and there exists at least one index pair in the cycle for which . We note that this cycle might contain only two different nodes.
3.2. Comparison of Models Allowing Different Options within Choices: The General Case
- C.s*.1. For every value of there exists an index pair for which .We note that this condition is necessary. If it does not hold, the number of options has to be reduced.
- C.s*.2. For every nonempty partition of S and (, ), there are two (not necessarily different) index pairs and , for whichWe note that this condition is also a necessary condition, not just sufficient.
- C.s*.3. There exists a cycle in the graph along the ‘better to some extent’ and ‘extremely better’ edges which contains at least one ‘extremely better’ edge. In other words, there exists a cycle () for which are different, and , where , and there exists at least one index pair in the cycle for which . We note that it may be the case that this cycle contains only two different nodes.
Comparison Based on Evaluability
- (A)
- Data are evaluable only in the s-option model.
- (B)
- Data are evaluable only in the (s+2)-option model.
- (C)
- Data are evaluable in both models.
- (D)
- Data are not evaluable in either model.
4. Simulation Results
4.1. The Cases s = 2 and s + 2 = 4
4.2. The Cases s = 3 and s + 2 = 5
5. Algorithm for Model Choice
Algorithm 1 Option Number Selection |
|
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erdil, Ü.D.; Tümer, M.; Nadiri, H.; Aghaei, I. Prioritizing information sources and requirements in students’ choice of higher education destination: Using AHP analysis. Sage Open 2021, 11. [Google Scholar] [CrossRef]
- Esangbedo, M.O.; Bai, S.; Mirjalili, S.; Wang, Z. Evaluation of human resource information systems using grey ordinal pairwise comparison MCDM methods. Expert Syst. Appl. 2021, 182, 115151. [Google Scholar] [CrossRef]
- Kulak, A.; Selvi, H. Scaling the Psychological Variables that Affect Performance of Athletes by Means of Pairwise Comparison Method. Int. J. Recreat. Sports Sci. 2019, 3, 16–24. [Google Scholar] [CrossRef]
- Krivulin, N.; Prinkov, A.; Gladkikh, I. Using pairwise comparisons to determine consumer preferences in hotel selection. Mathematics 2022, 10, 730. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of application of Analytic Hierarchy Process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Lee, S.E.; Choi, M.; Kim, S. How and what to study about IoT: Research trends and future directions from the perspective of social science. Telecommun. Policy 2017, 41, 1056–1067. [Google Scholar] [CrossRef]
- Sasaki, Y. Strategic manipulation in group decisions with pairwise comparisons: A game theoretical perspective. Eur. J. Oper. Res. 2023, 304, 1133–1139. [Google Scholar] [CrossRef]
- Dym, C.L.; Wood, W.H.; Scott, M.J. Rank ordering engineering designs: Pairwise comparison charts and Borda counts. Res. Eng. Des. 2002, 13, 236–242. [Google Scholar] [CrossRef]
- Amlani, A.M.; Schafer, E.C. Application of paired-comparison methods to hearing aids. Trends Amplif. 2009, 13, 241–259. [Google Scholar] [CrossRef]
- Rosenberger, R.S.; Peterson, G.L.; Loomis, J.B. Applying a method of paired comparisons to measure economic values for multiple goods sets. J. Agric. Appl. Econ. 2002, 34, 215–229. [Google Scholar] [CrossRef]
- Huang, J.J.; Chen, C.Y. Resource Allocation of Cooperative Alternatives Using the Analytic Hierarchy Process and Analytic Network Process with Shapley Values. Algorithms 2024, 17, 152. [Google Scholar] [CrossRef]
- Temesi, J.; Szádoczki, Z.; Bozóki, S. Incomplete pairwise comparison matrices: Ranking top women tennis players. J. Oper. Res. Soc. 2024, 75, 145–157. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Weernink, M.G.; Janus, S.I.; van Til, J.A.; Raisch, D.W.; van Manen, J.G.; IJzerman, M.J. A systematic review to identify the use of preference elicitation methods in healthcare decision making. Pharm. Med. 2014, 28, 175–185. [Google Scholar] [CrossRef]
- Cheng, K.E.; McHugh, J.A.; Deek, F.P. On the use of paired comparisons to construct group preference scales for decision making. Group Decis. Negot. 2013, 22, 519–540. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, J.; Gao, Y. Multi-Level Decision Making, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978–3-662-46059-7. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Dyer, J.S. Remarks on the Analytic Hierarchy Process. Manag. Sci. 1990, 36, 249–258. [Google Scholar] [CrossRef]
- Bozóki, S.; Tsyganok, V. The (logarithmic) least squares optimality of the arithmetic (geometric) mean of weight vectors calculated from all spanning trees for incomplete additive (multiplicative) pairwise comparison matrices. Int. J. Gen. Syst. 2019, 48, 362–381. [Google Scholar] [CrossRef]
- Brunelli, M. A survey of inconsistency indices for pairwise comparisons. Int. J. Gen. Syst. 2018, 47, 751–771. [Google Scholar] [CrossRef]
- Brunelli, M.; Fedrizzi, M. Inconsistency indices for pairwise comparisons and the Pareto dominance principle. Eur. J. Oper. Res. 2024, 312, 273–282. [Google Scholar] [CrossRef]
- Sato, Y.; Tan, K.H. Inconsistency indices in pairwise comparisons: An improvement of the consistency index. Ann. Oper. Res. 2023, 326, 809–830. [Google Scholar] [CrossRef]
- Ágoston, K.C.; Csató, L. A lexicographically optimal completion for pairwise comparison matrices with missing entries. Eur. J. Oper. Res. 2024, 314, 1078–1086. [Google Scholar] [CrossRef]
- Tekile, H.A.; Fedrizzi, M.; Brunelli, M. Constrained eigenvalue minimization of incomplete pairwise comparison matrices by Nelder-Mead algorithm. Algorithms 2021, 14, 222. [Google Scholar] [CrossRef]
- Pascoe, S. A simplified algorithm for dealing with inconsistencies using the Analytic Hierarchy Process. Algorithms 2022, 15, 442. [Google Scholar] [CrossRef]
- Ágoston, K.C.; Csató, L. Inconsistency thresholds for incomplete pairwise comparison matrices. Omega 2022, 108, 102576. [Google Scholar] [CrossRef]
- Harker, P.T. Incomplete pairwise comparisons in the analytic hierarchy process. Math. Modell. 1987, 9, 837–848. [Google Scholar] [CrossRef]
- Bozóki, S.; Fülöp, J.; Rónyai, L. On optimal completion of incomplete pairwise comparison matrices. Math. Comput. Modell. 2010, 52, 318–333. [Google Scholar] [CrossRef]
- Bozóki, S.; Csató, L.; Temesi, J. An application of incomplete pairwise comparison matrices for ranking top tennis players. Eur. J. Oper. Res. 2016, 248, 211–218. [Google Scholar] [CrossRef]
- Petróczy, D.G. An alternative quality of life ranking on the basis of remittances. Socio-Econ. Plann. Sci. 2021, 78, 101042. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The PROMETHEE method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Aherdoost, H.; Madanchian, M. A Comprehensive Overview of the ELECTRE Method in Multi-Criteria Decision-Making. J. Manag. Sci. Eng. Res. 2023, 6, 5–16. [Google Scholar] [CrossRef]
- Thurstone, L.L. A law of comparative judgment. Psychol. Rev. 1927, 34, 273–286. [Google Scholar] [CrossRef]
- Tutz, G.; Schauberger, G. Extended ordered paired comparison models with application to football data from German Bundesliga. AStA Adv. Stat. Anal. 2015, 99, 209–227. [Google Scholar] [CrossRef]
- Jeon, J.J.; Kim, Y. Revisiting the Bradley-Terry model and its application to information retrieval. J. Korean Data Inf. Sci. Soc. 2013, 24, 1089–1099. [Google Scholar] [CrossRef]
- Stein, A.; Aryal, J.; Gort, G. Use of the Bradley-Terry model to quantify association in remotely sensed images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 852–856. [Google Scholar] [CrossRef]
- Kosztyán, Z.T.; Orbán-Mihálykó, É.; Mihálykó, C.; Csányi, V.V.; Telcs, A. Analyzing and clustering students’ application preferences in higher education. J. Appl. Stat. 2020, 47, 2961–2983. [Google Scholar] [CrossRef]
- Bradley, R.A.; Terry, M.E. Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 1952, 39, 324–345. [Google Scholar] [CrossRef]
- Glenn, W.A.; David, H.A. Ties in paired-comparison experiments using a modified Thurstone-Mosteller model. Biometrics 1960, 16, 86–109. [Google Scholar] [CrossRef]
- Rao, P.V.; Kupper, L.L. Ties in paired-comparison experiments: A generalization of the Bradley-Terry model. J. Am. Stat. Assoc. 1967, 62, 194–204. [Google Scholar] [CrossRef]
- Agresti, A. Analysis of ordinal paired comparison data. J. R. Stat. Soc. Ser. C Appl. Stat. 1992, 41, 287–297. [Google Scholar] [CrossRef]
- Orbán-Mihálykó, É.; Mihálykó, C.; Koltay, L. A generalization of the Thurstone method for multiple choice and incomplete paired comparisons. Cent. Eur. J. Oper. Res. 2019, 27, 133–159. [Google Scholar] [CrossRef]
- Orbán-Mihálykó, É.; Mihálykó, C.; Koltay, L. Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions. Cent. Eur. J. Oper. Res. 2019, 27, 515–532. [Google Scholar] [CrossRef]
- Ford, L.R., Jr. Solution of a ranking problem from binary comparisons. Am. Math. Mon. 1957, 64, 28–33. [Google Scholar] [CrossRef]
- Davidson, R.R. On Extending the Bradley-Terry Model to Accommodate Ties in Paired Comparison Experiments. J. Am. Stat. Assoc. 1970, 65, 317–328. [Google Scholar] [CrossRef]
- Gyarmati, L.; Orbán-Mihálykó, É.; Mihálykó, C. Comparative analysis of the existence and uniqueness conditions of parameter estimation in paired comparison models. Axioms 2023, 12, 575. [Google Scholar] [CrossRef]
- Orbán-Mihálykó, É.; Koltay, L.; Szabó, F.; Csuti, P.; Kéri, R.; Schanda, J. A new statistical method for ranking of light sources based on subjective points of view. Acta Polytech. Hung. 2015, 12, 195–214. [Google Scholar]
- Gyarmati, L.; Edvy, L.; Mihálykó, C.; Orbán-Mihálykó, É. Decision support for sports selection based on performance measurement applying the generalized Thurstone method. Int. J. Sports Sci. Coach. 2024, 17479541241240609. [Google Scholar] [CrossRef]
- Gyarmati, L.; Mihálykó, C.; Orbán-Mihálykó, É. Application of different option numbers in Thurstone motivated models. In Proceedings of the 3rd Conference on Information Technology and Data Science, Debrecen, Hungary, 26–28 August 2024. [Google Scholar]
2 and 4 | Only 4 | Neither | ||||
---|---|---|---|---|---|---|
10 | 23 | 4006 | 95,971 | 3.887 | 6.059 | −0.359 |
11 | 85 | 8611 | 91,304 | 4.566 | 6.405 | −0.287 |
12 | 279 | 14,819 | 84,902 | 4.880 | 6.823 | −0.285 |
13 | 708 | 21,872 | 77,420 | 5.168 | 7.231 | −0.285 |
14 | 1473 | 29,086 | 69,441 | 5.313 | 6.917 | −0.232 |
15 | 2646 | 35,962 | 61,392 | 5.421 | 6.736 | −0.195 |
16 | 4195 | 42,121 | 53,684 | 5.576 | 6.655 | −0.162 |
17 | 6401 | 47,080 | 46,519 | 5.709 | 6.465 | −0.117 |
18 | 8981 | 50,959 | 40,060 | 5.839 | 6.332 | −0.078 |
19 | 11,999 | 53,683 | 34,318 | 5.924 | 6.179 | −0.041 |
20 | 15,499 | 55,244 | 29,257 | 5.946 | 5.970 | −0.004 |
21 | 19,284 | 55,878 | 24,838 | 5.971 | 5.811 | 0.027 |
22 | 23,220 | 55,720 | 21,060 | 5.939 | 5.643 | 0.052 |
23 | 27,247 | 54,962 | 17,791 | 5.921 | 5.456 | 0.085 |
24 | 31,453 | 53,502 | 15,045 | 5.882 | 5.284 | 0.113 |
25 | 35,552 | 51,612 | 12,836 | 5.808 | 5.090 | 0.141 |
30 | 54,845 | 39,613 | 5542 | 5.424 | 4.296 | 0.263 |
40 | 79,977 | 18,949 | 1074 | 4.441 | 3.151 | 0.410 |
50 | 91,265 | 8514 | 221 | 3.569 | 2.417 | 0.477 |
60 | 96,142 | 3797 | 61 | 2.898 | 1.929 | 0.503 |
70 | 98,224 | 1763 | 13 | 2.388 | 1.590 | 0.502 |
80 | 99,167 | 831 | 2 | 2.011 | 1.343 | 0.497 |
90 | 99,587 | 412 | 1 | 1.729 | 1.163 | 0.487 |
100 | 99,781 | 219 | 0 | 1.510 | 1.023 | 0.476 |
200 | 99,999 | 1 | 0 | 0.650 | 0.460 | 0.412 |
300 | 100,000 | 0 | 0 | 0.414 | 0.297 | 0.394 |
400 | 100,000 | 0 | 0 | 0.304 | 0.219 | 0.387 |
500 | 100,000 | 0 | 0 | 0.240 | 0.174 | 0.382 |
600 | 100,000 | 0 | 0 | 0.199 | 0.144 | 0.381 |
700 | 100,000 | 0 | 0 | 0.169 | 0.123 | 0.378 |
800 | 100,000 | 0 | 0 | 0.148 | 0.107 | 0.376 |
900 | 100,000 | 0 | 0 | 0.131 | 0.095 | 0.374 |
1000 | 100,000 | 0 | 0 | 0.117 | 0.085 | 0.373 |
3 and 5 | Only 5 | Neither | ||||
---|---|---|---|---|---|---|
10 | 39 | 2283 | 97,678 | 5.715 | 7.765 | −0.264 |
11 | 168 | 4899 | 94,933 | 6.203 | 9.178 | −0.324 |
12 | 454 | 8313 | 91,233 | 6.508 | 8.666 | −0.249 |
13 | 936 | 12,437 | 86,627 | 6.838 | 8.495 | −0.195 |
14 | 1788 | 16,617 | 81,595 | 6.870 | 8.342 | −0.177 |
15 | 3041 | 20,513 | 76,446 | 6.959 | 8.112 | −0.142 |
16 | 4738 | 23,837 | 71,425 | 7.091 | 7.820 | −0.093 |
17 | 6766 | 26,470 | 66,764 | 7.074 | 7.563 | −0.065 |
18 | 9171 | 28,704 | 62,125 | 7.045 | 7.260 | −0.030 |
19 | 11,901 | 30,146 | 57,953 | 6.913 | 6.949 | −0.005 |
20 | 14,931 | 30,912 | 54,157 | 6.847 | 6.706 | 0.021 |
30 | 46,295 | 21,860 | 31,845 | 5.583 | 4.466 | 0.250 |
40 | 66,621 | 10,441 | 22,938 | 4.310 | 3.181 | 0.355 |
50 | 77,156 | 4594 | 18,250 | 3.370 | 2.404 | 0.402 |
60 | 82,770 | 1964 | 15,266 | 2.688 | 1.896 | 0.417 |
70 | 86,060 | 887 | 13,053 | 2.206 | 1.559 | 0.415 |
80 | 88,263 | 412 | 11,325 | 1.857 | 1.316 | 0.411 |
90 | 89,784 | 191 | 10,025 | 1.593 | 1.137 | 0.401 |
100 | 90,892 | 92 | 9016 | 1.391 | 1.001 | 0.390 |
200 | 95,497 | 0 | 4503 | 0.607 | 0.452 | 0.341 |
300 | 96,976 | 0 | 3024 | 0.387 | 0.292 | 0.327 |
400 | 97,762 | 0 | 2238 | 0.285 | 0.215 | 0.323 |
500 | 98,232 | 0 | 1768 | 0.225 | 0.171 | 0.319 |
600 | 98,530 | 0 | 1470 | 0.186 | 0.142 | 0.317 |
700 | 98,714 | 0 | 1286 | 0.159 | 0.121 | 0.315 |
800 | 98,867 | 0 | 1133 | 0.138 | 0.105 | 0.314 |
900 | 98,991 | 0 | 1009 | 0.122 | 0.093 | 0.314 |
1000 | 99,105 | 0 | 895 | 0.110 | 0.084 | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyarmati, L.; Mihálykó, C.; Orbán-Mihálykó, É. Algorithm for Option Number Selection in Stochastic Paired Comparison Models. Algorithms 2024, 17, 410. https://doi.org/10.3390/a17090410
Gyarmati L, Mihálykó C, Orbán-Mihálykó É. Algorithm for Option Number Selection in Stochastic Paired Comparison Models. Algorithms. 2024; 17(9):410. https://doi.org/10.3390/a17090410
Chicago/Turabian StyleGyarmati, László, Csaba Mihálykó, and Éva Orbán-Mihálykó. 2024. "Algorithm for Option Number Selection in Stochastic Paired Comparison Models" Algorithms 17, no. 9: 410. https://doi.org/10.3390/a17090410
APA StyleGyarmati, L., Mihálykó, C., & Orbán-Mihálykó, É. (2024). Algorithm for Option Number Selection in Stochastic Paired Comparison Models. Algorithms, 17(9), 410. https://doi.org/10.3390/a17090410