Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy
Abstract
:1. Introduction
2. Problem Formulation
2.1. Problem Discretization
2.2. Loss Function
2.3. The a Posteriori Error Estimator
2.4. The Choice of and
3. Numerical Results
3.1. Implementation Details
3.2. Adaptive Training Strategies
- Strategy #1: Random patch centers with uniform distribution
- Strategy #2: Fixed patch centers
- Strategy #3: Fixed patch centers and small level gap strategy
3.3. The Importance of the Error Indicator
- Strategy #4: Adaptive strategy without the error indicator
3.4. Extension to More a Complex Domain
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lagaris, I.; Likas, A.; Fotiadis, D. Artificial neural network methods in quantum mechanics. Comput. Phys. Commun. 1997, 104, 1–14. [Google Scholar] [CrossRef]
- Lagaris, I.; Likas, A.; Fotiadis, D. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 1998, 9, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Lagaris, I.; Likas, A.; Papageorgiou, D. Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Netw. 2000, 11, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org (accessed on 15 September 2024).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M.J.; Leary, C.; Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-Milne, S.; et al. JAX: Composable Transformations of Python+NumPy Programs. 2018. Available online: http://github.com/google/jax (accessed on 15 September 2024).
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics informed deep learning (part ii): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10566. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Pu, J.; Li, J.; Chen, Y. Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 2021, 105, 1723–1739. [Google Scholar] [CrossRef]
- Yuan, L.; Ni, Y.; Deng, X.; Hao, S. A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. J. Comput. Phys. 2022, 462, 111260. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, Y.; Lu, C.; Luo, J. High-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN). J. Hydrol. 2023, 616, 128828. [Google Scholar] [CrossRef]
- Demo, N.; Strazzullo, M.; Rozza, G. An extended physics informed neural network for preliminary analysis of parametric optimal control problems. Comput. Math. Appl. 2023, 143, 383–396. [Google Scholar] [CrossRef]
- Gao, H.; Sun, L.; Wang, J. PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 2021, 428, 110079. [Google Scholar] [CrossRef]
- Yuyao, C.; Lu, L.; Karniadakis, G.; Dal Negro, L. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express 2020, 28, 11618–11633. [Google Scholar] [CrossRef]
- Tartakovsky, A.; Marrero, C.; Perdikaris, P.; Tartakovsky, G.; Barajas-Solano, D. Learning parameters and constitutive relationships with physics informed deep neural networks. arXiv 2018, arXiv:1808.03398. [Google Scholar]
- Chen, Z.; Liu, Y.; Sun, H. Physics-informed learning of governing equations from scarce data. Nat. Commun. 2021, 12, 6136. [Google Scholar] [CrossRef] [PubMed]
- Weinan, E.; Yu, B. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 2018, 6, 1–12. [Google Scholar]
- Müller, J.; Zeinhofer, M. Error estimates for the deep Ritz method with boundary penalty. In Proceedings of the Mathematical and Scientific Machine Learning, PMLR, Beijing, China, 15–17 August 2022; pp. 215–230. [Google Scholar]
- Lu, Y.; Lu, J.; Wang, M. A priori generalization analysis of the deep Ritz method for solving high dimensional elliptic partial differential equations. In Proceedings of the Conference on Learning Theory. PMLR, Boulder, CO, USA, 15–19 August 2021; pp. 3196–3241. [Google Scholar]
- Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018, 375, 1339–1364. [Google Scholar] [CrossRef]
- Al-Aradi, A.; Correia, A.; Jardim, G.; de Freitas Naiff, D.; Saporito, Y. Extensions of the deep Galerkin method. Appl. Math. Comput. 2022, 430, 127287. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Yue, J. A deep learning Galerkin method for the second-order linear elliptic equations. Int. J. Numer. Anal. Model. 2021, 18, 427–441. [Google Scholar]
- Smith, B.F. Domain decomposition methods for partial differential equations. In Parallel Numerical Algorithms; Springer: Berlin/Heidelberg, Germany, 1997; pp. 225–243. [Google Scholar]
- Toselli, A.; Widlund, O. Domain Decomposition Methods-Algorithms and Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 34. [Google Scholar]
- Jagtap, A.; Kharazmi, E.; Karniadakis, G. Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [Google Scholar] [CrossRef]
- Shukla, K.; Jagtap, A.D.; Karniadakis, G.E. Parallel physics-informed neural networks via domain decomposition. J. Comput. Phys. 2021, 447, 110683. [Google Scholar] [CrossRef]
- Jagtap, A.; Karniadakis, G. Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 2020, 28, 2002–2041. [Google Scholar]
- Moseley, B.; Markham, A.; Nissen-Meyer, T. Finite Basis Physics-Informed Neural Networks (FBPINNs): A scalable domain decomposition approach for solving differential equations. Adv. Comput. Math. 2023, 49, 62. [Google Scholar] [CrossRef]
- Viana, F.; Nascimento, R.; Dourado, A.; Yucesan, Y. Estimating model inadequacy in ordinary differential equations with physics-informed neural networks. Comput. Struct. 2021, 245, 106458. [Google Scholar] [CrossRef]
- Yang, L.; Meng, X.; Karniadakis, G. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J. Comput. Phys. 2021, 425, 109913. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, D.; Karniadakis, G. Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations. SIAM J. Sci. Comput. 2020, 42, A292–A317. [Google Scholar] [CrossRef]
- Yucesan, Y.; Viana, F. Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection. Comput. Ind. 2021, 125, 103386. [Google Scholar] [CrossRef]
- Zhu, Y.; Zabaras, N.; Koutsourelakis, P.; Perdikaris, P. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 2019, 394, 56–81. [Google Scholar] [CrossRef]
- Pang, G.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 2019, 41, A2603–A2626. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. Kan: Kolmogorov-arnold networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Koenig, B.C.; Kim, S.; Deng, S. KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics. arXiv 2024, arXiv:2407.04192. [Google Scholar]
- Qian, K.; Kheir, M. Investigating KAN-Based Physics-Informed Neural Networks for EMI/EMC Simulations. arXiv 2024, arXiv:2405.11383. [Google Scholar]
- Kumar, V.; Gleyzer, L.; Kahana, A.; Shukla, K.; Karniadakis, G.E. Mycrunchgpt: A llm assisted framework for scientific machine learning. J. Mach. Learn. Model. Comput. 2023, 4, 41–72. [Google Scholar] [CrossRef]
- Beck, C.; Hutzenthaler, M.; Jentzen, A.; Kuckuck, B. An overview on deep learning-based approximation methods for partial differential equations. Discret. Contin. Dyn. Syst. B 2022, 28, 3697–3746. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Lawal, Z.; Yassin, H.; Lai, D.; Che Idris, A. Physics-Informed Neural Network (PINN) Evolution and Beyond: A Systematic Literature Review and Bibliometric Analysis. Big Data Cogn. Comput. 2022, 6, 140. [Google Scholar] [CrossRef]
- Viana, F.A.; Subramaniyan, A.K. A survey of Bayesian calibration and physics-informed neural networks in scientific modeling. Arch. Comput. Methods Eng. 2021, 28, 3801–3830. [Google Scholar] [CrossRef]
- Kharazmi, E.; Zhang, Z.; Karniadakis, G. VPINNs: Variational physics-informed neural networks for solving partial differential equations. arXiv 2019, arXiv:1912.00873. [Google Scholar]
- Kharazmi, E.; Zhang, Z.; Karniadakis, G. hp-VPINNs: Variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Eng. 2021, 374, 113547. [Google Scholar] [CrossRef]
- Berrone, S.; Canuto, C.; Pintore, M. Solving PDEs by variational physics-informed neural networks: An a posteriori error analysis. Ann. Univ. Ferrara 2022, 68, 575–595. [Google Scholar] [CrossRef]
- Berrone, S.; Canuto, C.; Pintore, M. Variational-Physics-Informed Neural Networks: The role of quadratures and test functions. J. Sci. Comput. 2022, 92, 100. [Google Scholar] [CrossRef]
- Berrone, S.; Pieraccini, S.; Scialò, S. Towards effective flow simulations in realistic discrete fracture networks. J. Comput. Phys. 2016, 310, 181–201. [Google Scholar] [CrossRef]
- Sukumar, N.; Srivastava, A. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Comput. Methods Appl. Mech. Eng. 2022, 389, 114333. [Google Scholar] [CrossRef]
- Berrone, S.; Canuto, C.; Pintore, M.; Sukumar, N. Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks. Heliyon 2023, 9, e18820. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Wright, S.; Nocedal, J. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 1999; Volume 35, p. 7. [Google Scholar]
- Baydin, A.; Pearlmutter, B.; Radul, A.; Siskind, J. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 2018, 18, 5595–5637. [Google Scholar]
- Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–69. [Google Scholar]
Strategy #1 | Strategy #2 | Strategy #3 | Strategy #4 | Reference VPINN | |
---|---|---|---|---|---|
4 | −0.213 | −0.295 | −0.283 | −0.105 | −0.232 |
9 | −0.294 | −0.376 | −0.287 | −0.182 | −0.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berrone, S.; Pintore, M. Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy. Algorithms 2024, 17, 415. https://doi.org/10.3390/a17090415
Berrone S, Pintore M. Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy. Algorithms. 2024; 17(9):415. https://doi.org/10.3390/a17090415
Chicago/Turabian StyleBerrone, Stefano, and Moreno Pintore. 2024. "Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy" Algorithms 17, no. 9: 415. https://doi.org/10.3390/a17090415
APA StyleBerrone, S., & Pintore, M. (2024). Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy. Algorithms, 17(9), 415. https://doi.org/10.3390/a17090415