A Multi-Objective Path-Planning Approach for Multi-Scenario Urban Mobility Needs
Abstract
:1. Introduction
2. Preliminaries
2.1. A* Path-Planning Algorithm
Algorithm 1: A* Algorithm |
|
2.2. Genetic Algorithm
2.3. Dynamic Weight-Adjustment Mechanism
2.3.1. Urban Commuting
2.3.2. Energy-Efficient Driving
2.3.3. Holiday Travel
2.3.4. Nighttime Travel
3. Multi-Objective Path Planning
3.1. Optimization Objectives
- Total Distance
- 2.
- Congestion Distance
- 3.
- Total Time
- 4.
- Energy Consumption
- 5.
- Risk Index;
- 6.
- In this study, the risk index is measured by the sum of the “road type score” and “traffic flow score”. The risk index of the path is calculated as
3.2. Optimization Method
Algorithm 2: A* Initial Path Generation |
|
Algorithm 3: Path Optimization Algorithm |
|
4. Experimental Design
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, B. Multi-objective A* algorithm for the multimodal multi-objective path planning optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021; pp. 1704–1711. [Google Scholar]
- Akopov, A.S.; Beklaryan, L.A.; Beklaryan, A.L. Simulation-Based Optimisation for Autonomous Transportation Systems Using a Parallel Real-Coded Genetic Algorithm with Scalable Nonuniform Mutation. Cybern. Inf. Technol. 2021, 21, 127–144. [Google Scholar] [CrossRef]
- Wu, X.; Huang, S.; Huang, G. Deep reinforcement learning-based 2.5D multi-objective path planning for ground vehicles: Considering distance and energy consumption. Electronics 2023, 12, 3840. [Google Scholar] [CrossRef]
- Ren, Z.; Rathinam, S.; Likhachev, M.; Choset, H. Multi-objective path-based D* lite. IEEE Robot. Autom. Lett. 2022, 7, 3318–3325. [Google Scholar] [CrossRef]
- Wang, F.; Xie, Z.; Liu, H.; Pei, Z.; Liu, D. Multiobjective emergency resource allocation under the natural disaster chain with path planning. Int. J. Environ. Res. Public Health 2022, 19, 7876. [Google Scholar] [CrossRef] [PubMed]
- Bostelmann-Arp, L.; Steup, C.; Mostaghim, S. Multi-objective seed curve optimization for coverage path planning in precision farming. In Proceedings of the Genetic and Evolutionary Computation Conference, Lisbon, Portugal, 15–19 July 2023; pp. 1312–1320. [Google Scholar]
- Zhang, D.; Luo, R.; Yin, Y.; Zou, S. Multi-objective path planning for mobile robot in nuclear accident environment based on improved ant colony optimization with modified A*. Nucl. Eng. Technol. 2023, 55, 1838–1854. [Google Scholar] [CrossRef]
- Huang, S.; Wu, X.; Huang, G. Deep reinforcement learning-based multi-objective path planning on the off-road terrain environment for ground vehicles. arXiv 2023, arXiv:2305.13783. [Google Scholar]
- Pu, X.; Song, X.; Tan, L.; Zhang, Y. Improved ant colony algorithm in path planning of a single robot and multi-robots with multi-objective. Evol. Intell. 2024, 17, 1313–1326. [Google Scholar] [CrossRef]
- Cui, Q.; Liu, P.; Du, H.; Wang, H.; Ma, X. Improved multi-objective artificial bee colony algorithm-based path planning for mobile robots. Front. Neurorobotics 2023, 17, 1196683. [Google Scholar] [CrossRef]
- Ntakolia, C.; Kladis, G.P.; Lyridis, D.V. A fuzzy logic approach of Pareto optimality for multi-objective path planning in case of unmanned surface vehicle. J. Intell. Robot. Syst. 2023, 109, 21. [Google Scholar] [CrossRef]
- Zhao, L.; Bai, Y.; Paik, J.K. Achieving optimal-dynamic path planning for unmanned surface vehicles: A rational multi-objective approach and a sensory-vector re-planner. Ocean. Eng. 2023, 286, 115433. [Google Scholar] [CrossRef]
- Xin, J.; Zhong, J.; Yang, F.; Cui, Y.; Sheng, J. An Improved Genetic Algorithm for Path-Planning of Unmanned Surface Vehicle. Sensors 2019, 19, 2640. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yan, X.; Han, Y.; Ge, F.; Jiang, Y. Many-objective optimization-based path planning of multiple UAVs in oilfield inspection. Appl. Intell. 2022, 52, 12668–12683. [Google Scholar] [CrossRef]
- Salhi, M.; Delavernhe, F. Multiobjective UAV path planning: Connectivity quality and energy consumption. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 746–751. [Google Scholar]
- Zhang, W.; Peng, C.; Yuan, Y.; Cui, J.; Qi, L. A novel multi-objective evolutionary algorithm with a two-fold constraint-handling mechanism for multiple UAV path planning. Expert Syst. Appl. 2024, 238, 121862. [Google Scholar] [CrossRef]
- Xu, X.; Xie, C.; Luo, Z.; Zhang, C.; Zhang, T. A multi-objective evolutionary algorithm based on dimension exploration and discrepancy evolution for UAV path planning problem. Inf. Sci. 2024, 657, 119977. [Google Scholar] [CrossRef]
- Yuhang, R.; Liang, Z. An adaptive evolutionary multi-objective estimation of distribution algorithm and its application to multi-UAV path planning. IEEE Access 2023, 11, 50038–50051. [Google Scholar] [CrossRef]
- Jeddisaravi, K.; Alitappeh, R.J.; Guimarães, F.G. Multi-objective mobile robot path planning based on A* search. In Proceedings of the 6th International Conference on Computer and Knowledge Engineering, Edinburgh, Scotland, 25–29 April 2016; pp. 7–12. [Google Scholar]
- He, Y.; Liao, N.; Lin, K. Can China’s industrial sector achieve energy conservation and emission reduction goals dominated by energy efficiency enhancement? A multi-objective optimization approach. Energy Policy 2021, 149, 112108. [Google Scholar] [CrossRef]
- Guo, X.; Ji, M.; Zhao, Z.; Wen, D.; Zhang, W. Global path planning and multi-objective path control for unmanned surface vehicle based on modified particle swarm optimization (PSO) algorithm. Ocean Eng. 2020, 216, 107693. [Google Scholar] [CrossRef]
- Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-Star algorithm: An improved A-Star algorithm for AGV path planning in a port environment. IEEE Access 2021, 9, 59196–59210. [Google Scholar] [CrossRef]
- Shivgan, R.; Dong, Z. Energy-efficient drone coverage path planning using genetic algorithm. In Proceedings of the 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), Newark, NJ, USA, 11–14 May 2020; pp. 1–6. [Google Scholar]
- Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems. Appl. Soft Comput. 2021, 112, 107796. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, Y.; Li, W. A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV. IEEE Access 2021, 9, 7994–8005. [Google Scholar] [CrossRef]
- OpenStreetMap. About OpenStreetMap. Available online: https://wiki.openstreetmap.org/wiki/Main_Page (accessed on 1 October 2024).
- Ait-Saadi, A.; Meraihi, Y.; Soukane, A.; Ramdane-Cherif, A.; Gabis, A.B. A novel hybrid chaotic aquila optimization algorithm with simulated annealing for unmanned aerial vehicles path planning. Comput. Electr. Eng. 2022, 104, 108461. [Google Scholar] [CrossRef]
- Xiang, D.; Lin, H.; Ouyang, J.; Huang, D. Combined improved A* and greedy algorithm for path planning of multi-objective mobile robot. Sci. Rep. 2022, 12, 13273. [Google Scholar] [CrossRef] [PubMed]
Scenario | Total Distance | Congestion Distance | Total Time | Energy Consumption | Safety |
---|---|---|---|---|---|
Urban Commuting | 0.1 | 0.2 | 0.6 | 0.05 | 0.05 |
Energy-Efficient Driving | 0.2 | 0.1 | 0.1 | 0.5 | 0.1 |
Holiday Travel | 0.25 | 0.25 | 0.2 | 0.15 | 0.15 |
Nighttime Travel | 0.2 | 0.05 | 0.2 | 0.15 | 0.4 |
Scenario | Path Type | Total Length (km) | Congestion Length (km) | Total Time (hours) | Risk Index | Energy Consumption | Weighted Cost |
---|---|---|---|---|---|---|---|
Urban Commuting | Initial Population 5 | 75.5 | 7.657 | 1.258 | 4.674 | 77,030.846 | 0.276 |
Initial Population 1 | 74.517 | 7.318 | 1.242 | 4.605 | 75,980.633 | 0.21 | |
Initial Population 2 | 70.533 | 8.113 | 1.176 | 4.93 | 72,155.424 | 0.079 | |
Optimized Path | 69.442 | 4.077 | 1.391 | 4.623 | 70,257.355 | 0.075 | |
Energy-Efficient Driving | Initial Population 5 | 75.5 | 7.657 | 1.258 | 4.674 | 77,030.846 | 0.269 |
Initial Population 1 | 74.517 | 7.318 | 1.242 | 4.605 | 75,980.633 | 0.204 | |
Initial Population 2 | 70.533 | 8.113 | 1.176 | 4.93 | 72,155.424 | 0.075 | |
Optimized Path | 65.458 | 4.872 | 1.474 | 4.974 | 66,432.146 | −0.192 | |
Holiday Travel | Initial Population 7 | 76.499 | 9.229 | 1.275 | 4.608 | 78,344.574 | 0.410 |
Initial Population 5 | 75.500 | 7.657 | 1.258 | 4.674 | 77,030.846 | 0.393 | |
Initial Population 1 | 74.517 | 7.318 | 1.242 | 4.605 | 75,980.633 | 0.304 | |
Optimized Path | 73.622 | 12.218 | 1.560 | 4.136 | 76,066.184 | 0.196 | |
Nighttime Trave | Initial Population 7 | 76.499 | 9.229 | 1.275 | 4.608 | 78,344.574 | 0.420 |
Initial Population 1 | 74.517 | 7.318 | 1.242 | 4.605 | 75,980.633 | 0.355 | |
Initial Population 10 | 83.014 | 16.924 | 1.384 | 4.361 | 86,398.536 | 0.350 | |
Optimized Path | 70.99 | 8.955 | 1.483 | 4.095 | 72,781.000 | −0.133 |
Path Type | Total Length | Congestion Length | Total Time | Risk Index | Energy Consumption | Execution Time (s) |
---|---|---|---|---|---|---|
Genetic Algorithm Multi-Objective Optimization (Urban Commuting) | 69.442 | 4.077 | 1.391 | 4.623 | 70,257.355 | 144.33 |
Genetic Algorithm Multi-Objective Optimization (Energy-Efficient Driving) | 65.458 | 4.872 | 1.474 | 4.974 | 66,432.146 | 152.21 |
Genetic Algorithm Multi-Objective Optimization (Holiday Travel) | 69.532 | 4.077 | 1.409 | 4.621 | 70,347.685 | 148.17 |
Genetic Algorithm Multi-Objective Optimization (Nighttime Travel) | 73.63 | 12.218 | 1.56 | 4.174 | 76,073.595 | 140.94 |
Simulated Annealing Single-Objective Optimization | 75.493 | 8.199 | 1.258 | 4.691 | 77,133.551 | 173.14 |
Greedy Algorithm Single-Objective Optimization | 75.117 | 8.199 | 1.251 | 4.701 | 76,756.651 | 165.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, M.; Liang, S.; Yu, S.; Zhang, C.; Du, S. A Multi-Objective Path-Planning Approach for Multi-Scenario Urban Mobility Needs. Algorithms 2025, 18, 41. https://doi.org/10.3390/a18010041
Wang Z, Zhang M, Liang S, Yu S, Zhang C, Du S. A Multi-Objective Path-Planning Approach for Multi-Scenario Urban Mobility Needs. Algorithms. 2025; 18(1):41. https://doi.org/10.3390/a18010041
Chicago/Turabian StyleWang, Zhaohui, Meng Zhang, Shanqing Liang, Shuang Yu, Chengchun Zhang, and Sheng Du. 2025. "A Multi-Objective Path-Planning Approach for Multi-Scenario Urban Mobility Needs" Algorithms 18, no. 1: 41. https://doi.org/10.3390/a18010041
APA StyleWang, Z., Zhang, M., Liang, S., Yu, S., Zhang, C., & Du, S. (2025). A Multi-Objective Path-Planning Approach for Multi-Scenario Urban Mobility Needs. Algorithms, 18(1), 41. https://doi.org/10.3390/a18010041