Grounding Grid Electrical Impedance Imaging Method Based on an Improved Conditional Generative Adversarial Network
Abstract
:1. Introduction
2. Grounding Grid Boundary Voltage Calculation
3. Research on an Improved CGAN Ground Grid Imaging Algorithm
3.1. Improved CGAN Structure
3.1.1. Generator Design
3.1.2. Discriminator Design
3.2. Objective Function and Training Process
4. Grounding Grid Imaging Results and Evaluation Analysis
4.1. Ground Grid Imaging Results
4.2. Ground Grid Imaging Evaluation Index
4.3. Analysis of Ground Grid Imaging Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Fang, M.; Hu, F.; Zeng, S.; Deng, X. A new design of substation grounding based on electrolytic cathodic protection and on transfer corrosion current. Electr. Power Syst. Res. 2021, 195, 107174. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, J.; Huang, Y.; Wang, J. Design of substation grounding grid in CFETR. Sci. Rep. 2024, 14, 25009. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, Y.; Gao, X.; Zhao, J.; Yuan, Y.; Liao, R. Research Advances of Soil Corrosion of Grounding Grids. Micromachines 2021, 12, 513. [Google Scholar] [CrossRef]
- Zhao, J.; Meng, X.; Ren, X.; Li, S.; Zhang, F.; Yang, X.; Xu, J.; Yuan, Y. Review on soil corrosion and protection of grounding grids. Materials 2024, 17, 507. [Google Scholar] [CrossRef]
- Li, X.; Yang, F.; Ming, J.L.; Jadoon, A.; Han, S. Imaging the corrosion in grounding grid branch with inner-source electrical impedance tomography. Energies 2018, 11, 1739. [Google Scholar] [CrossRef]
- Li, X.; Yang, F.; Yu, X.; Dong, M.; Yao, D. Research on the inverse problem of grounding grid fault diagnosis based on inner-source EIT. Trans. China Electrotech. Soc. 2019, 34, 902–909. [Google Scholar]
- Hu, J.-Y.; Hu, J.-G.; Lan, D.-L.; Ming, J.-L.; Zhou, Y.-T.; Li, Y.-W. Corrosion evaluation of the grounding grid in transformer substation using electrical impedance tomography technology. In Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October 2017. [Google Scholar]
- Yan, X.; Huang, S.; Smolik, W.T.; Chen, W.; Yang, S. A detection method for fast electrical impedance imaging of grounding grid based on optimized differential-multigrid-homotopy algorithm. IEEE Trans. Instrum. Meas. 2023, 72, 3528714. [Google Scholar] [CrossRef]
- He, L.; Yang, L.; Yan, X.; Chen, W.; Huang, S. Research on the grounding grid electrical impedance imaging algorithm based on improved Tikhonov and Lp regularization. Prog. Electromagn. Res. B 2024, 106, 1–16. [Google Scholar] [CrossRef]
- Wang, H.; Liu, K.; Wu, Y.; Wang, S.; Zhang, Z.; Li, F.; Yao, J. Image reconstruction for electrical impedance tomography using radial basis function neural network based on hybrid particle swarm optimization algorithm. IEEE Sens. J. 2021, 21, 1926–1934. [Google Scholar] [CrossRef]
- Jeon, D.; Kim, M.K.; Jeong, Y.; Oh, J.E.; Moon, J.; Kim, D.J.; Yoon, S. High-accuracy rebar position detection using deep learning–based frequency-difference electrical resistance tomography. Autom. Constr. 2022, 135, 104116. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Fu, F.; Wang, M.; Yang, B.; Lou, Y.; Tian, Z. A fully connected neural network-based voltage compensation method for accurate reconstruction in brain electrical impedance tomography. Biomed. Signal Process. Control 2023, 86, 105252. [Google Scholar] [CrossRef]
- Qin, S.; Wang, Y.; Tai, H.-M.; Wang, H.; Liao, X.; Fu, Z. TEM apparent resistivity imaging for grounding grid detection using artificial neural network. IET Gener. Transm. Distrib. 2019, 13, 3932–3940. [Google Scholar] [CrossRef]
- Huang, Z.; Xia, L.; Zhang, H.; Liu, F.; Tu, Y.; Yang, Z.; Wei, W. Evaluation of grounding grid corrosion extent based on laser-induced breakdown spectroscopy (LIBS) combined with machine learning. Comput. Electr. Eng. 2024, 120, 109849. [Google Scholar] [CrossRef]
- Yin, L.; Li, Y. Multi-point synchronous temporary grounding wire detection device based on convolutional neural networks. Int. J. Electr. Power Energy Syst. 2024, 158, 109955. [Google Scholar] [CrossRef]
- Fu, Z.; Song, S.; Wang, X.; Li, J.; Tai, H.-M. Imaging the topology of grounding grids based on wavelet edge detection. IEEE Trans. Magn. 2018, 54, 6200808. [Google Scholar] [CrossRef]
- Noroznia, H.; Gandomkar, M.; Nikoukar, J. Pipeline failure evaluation and prediction using failure probability and neural network based on measured data. Heliyon 2024, 10, e26837. [Google Scholar] [CrossRef]
- Adail, A.S.; Saad, M.H.; Said, A. Evaluation of the optimum safety performance of the nuclear reactor compact grounding system under lightning strikes and ground fault. Kerntechnik 2023, 89, 1–14. [Google Scholar] [CrossRef]
- Hui, X.; Xu, Y.; Niu, J.; Zhang, W. Rapid evaluation and prediction of cure-induced residual stress of composites based on cGAN deep learning model. Compos. Struct. 2024, 330, 117827. [Google Scholar] [CrossRef]
- Yang, B.; Arshad, M.H.; Zhao, Q. Packet-level and flow-level network intrusion detection based on reinforcement learning and adversarial training. Algorithms 2022, 15, 453. [Google Scholar] [CrossRef]
- Du, X.; Qi, J.; Kang, J.; Sun, Z.; Wang, C.; Xie, J. Partial discharge data augmentation and pattern recognition method based on DAE-GAN. Algorithms 2024, 17, 487. [Google Scholar] [CrossRef]
- Yan, X.; Lyu, Q.; Lin, X.; Chen, W. Research on grounding grid electrical impedance tomography algorithm based on Tikhonov and TV hybrid regularization. Chin. J. Sci. Instrum. 2021, 42, 160–171. [Google Scholar]
- Wang, Z.; Zhang, F.; Zhang, T.; Yang, Y.; Fu, Y. High-Resolution Image Generation with Enhanced PatchGAN Discriminator. Pattern Recognit. 2023, 142, 109337. [Google Scholar]
- Han, B.; Guo, L.; Wang, J.; Zhang, Z.; Zhang, G.; Jia, S. Fast general normalized convolutional sparse filtering via L1-L2 mixed norm for rotating machinery fault diagnosis. Measurement 2022, 198, 111136. [Google Scholar] [CrossRef]
Model | Reasoning Time (s) | Performance |
---|---|---|
Tikhonov | 6.3 | Poor quality, sensitive to noise |
Noser | 4.5 | Moderate quality, limited robustness |
TV | 7.8 | Good quality, prone to artifacts |
CGAN | 2.3 | Excellent quality, robust to noise |
Model | A | R |
---|---|---|
(Single corrosion) | 96.3% | 7.6% |
(Single corrosion) | 95.5% | 8.1% |
(Double corrosion) | 91.2% | 12.6% |
(Double corrosion) | 88.7% | 15.8% |
Model 1 (2 × 3) | Model 2 (3 × 3) | |||
---|---|---|---|---|
S | P | S | P | |
CNN | 0.8146 | 16.4524 | 0.8065 | 16.6654 |
U-Net | 0.8476 | 18.1468 | 0.8654 | 18.4514 |
U-Net-CBAM | 0.8975 | 20.4465 | 0.9044 | 19.6332 |
A | R | |
---|---|---|
CNN | 85.2% | 25.2% |
U-Net | 88.6% | 18.6% |
U-Net-CBAM | 94.3% | 9.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Luo, D.; Fu, Z.; Xue, Z.; Bu, X. Grounding Grid Electrical Impedance Imaging Method Based on an Improved Conditional Generative Adversarial Network. Algorithms 2025, 18, 48. https://doi.org/10.3390/a18010048
Zhu K, Luo D, Fu Z, Xue Z, Bu X. Grounding Grid Electrical Impedance Imaging Method Based on an Improved Conditional Generative Adversarial Network. Algorithms. 2025; 18(1):48. https://doi.org/10.3390/a18010048
Chicago/Turabian StyleZhu, Ke, Donghui Luo, Zhengzheng Fu, Zhihang Xue, and Xianghang Bu. 2025. "Grounding Grid Electrical Impedance Imaging Method Based on an Improved Conditional Generative Adversarial Network" Algorithms 18, no. 1: 48. https://doi.org/10.3390/a18010048
APA StyleZhu, K., Luo, D., Fu, Z., Xue, Z., & Bu, X. (2025). Grounding Grid Electrical Impedance Imaging Method Based on an Improved Conditional Generative Adversarial Network. Algorithms, 18(1), 48. https://doi.org/10.3390/a18010048