Modeling Post-Fire Tree Mortality Using a Logistic Regression Method within a Forest Landscape Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Parameterization
- = model coefficients,
- X1 = tree diameter (cm) at breast height,
- X2 = height of bark charring (m).
2.3. Experimental Design
2.4. Data Analysis
3. Results
3.1. Ozark Highlands Section
3.2. Gulf Coastal Plains Section
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iverson, L.R.; Hutchinson, T.F.; Prasad, A.M.; Peters, M.P. Thinning, fire, and oak regeneration across a heterogeneous landscape in the eastern U.S.: 7-year results. For. Ecol. Manag. 2008, 255, 3035–3050. [Google Scholar] [CrossRef] [Green Version]
- Sturtevant, B.R.; Scheller, R.M.; Miranda, B.R.; Shinneman, D.; Syphard, A. Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II. Ecol. Modell. 2009, 220, 3380–3393. [Google Scholar] [CrossRef]
- Knapp, B.O.; Hullinger, M.A.; Kabrick, J.M. Effects of fire frequency on long-term development of an oak-hickory forest in Missouri, U.S.A. For. Ecol. Manag. 2017, 387, 19–29. [Google Scholar] [CrossRef]
- Nowacki, G.J.; Abrams, M.D. The Demise of Fire and “Mesophication” of Forests in the Eastern United States. Bioscience 2008, 58, 123. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.J.; Liu, Y.; O’Brien, J.J.; Elliott, K.J.; Starr, G.; Miniat, C.F.; Hiers, J.K. Future climate and fire interactions in the southeastern region of the United States. For. Ecol. Manag. 2014, 327, 316–326. [Google Scholar] [CrossRef]
- Brown, R.T.; Agee, J.K.; Franklin, J.F. Forest restoration and fire: Principles in the context of place. Conserv. Biol. 2004, 18, 903–912. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forest of the future: Managing in the face of uncertanity. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.J.; Hiers, J.K.; O’Brien, J.J.; Jack, S.B.; Engstrom, R.T. Silviculture that sustains: The nexus between silviculture, frequent prescribed fire, and conservation of biodiversity in longleaf pine forests of the southeastern United States. Can. J. For. Res. 2006, 36, 2724–2736. [Google Scholar] [CrossRef]
- Knapp, B.O.; Stephan, K.; Hubbart, J.A. Structure and composition of an oak-hickory forest after over 60 years of repeated prescribed burning in Missouri, U.S.A. For. Ecol. Manag. 2015, 344, 95–109. [Google Scholar] [CrossRef]
- Buma, B.; Wessman, C.A. Disturbance interactions can impact resilience mechanisms of forests. Ecosphere 2011, 2, 1–13. [Google Scholar] [CrossRef]
- He, H.S.; Mladenoff, D.J. Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 1999, 80, 81–99. [Google Scholar] [CrossRef]
- Jin, W.; He, H.S.; Shifley, S.R.; Wang, W.J.; Kabrick, J.M.; Davidson, B.K. How can prescribed burning and harvesting restore shortleaf pine-oak woodland at the landscape scale in central United States? Modeling joint effects of harvest and fire regimes. For. Ecol. Manag. 2018, 410, 201–210. [Google Scholar] [CrossRef]
- Keane, R.E.; Ryan, K.C.; Running, S.W. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC. Tree Physiol. 1996, 16, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, Y.; Taylor, A.R.; Price, D.T.; Cyr, D.; Sainte-Marie, G. Stand-level drivers most important in determining boreal forest response to climate change. J. Ecol. 2017, 106, 977–990. [Google Scholar] [CrossRef]
- Reinhardt, E.D.; Keane, R.E.; Brown, J.K. Modeling fire effects. Int. J. Wildl. Fire 2001, 10, 373–380. [Google Scholar] [CrossRef]
- Reinhardt, E.D.; Dickinson, M.B. First-order fire effects models for land management: Overview and issues. Fire Ecol. 2010, 6, 131–150. [Google Scholar] [CrossRef]
- Butler, B.W.; Dickinson, M.B. Tree injury and mortality in fires: Developing process-based models. Fire Ecol. 2010, 6, 55–79. [Google Scholar] [CrossRef]
- Keane, R.E.; Cary, G.J.; Flannigan, M.D.; Parsons, R.A.; Davies, I.D.; King, K.J.; Li, C.; Bradstock, R.A.; Gill, M. Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modeling. Ecol. Modell. 2013, 266, 172–186. [Google Scholar] [CrossRef]
- Yang, J.; He, H.S.; Sturtevant, B.R.; Miranda, B.R.; Gustafson, E.J. Comparing effects of fire modeling methods on simulated fire patterns and succession: A case study in the Missouri Ozarks. Can. J. For. Res. 2008, 38, 1290–1302. [Google Scholar] [CrossRef]
- Keane, R.E.; Cary, G.J.; Davies, I.D.; Flannigan, M.D.; Gardner, R.H.; Lavorel, S.; Lenihan, J.M.; Li, C.; Rupp, T.S. A classification of landscape fire succession models: Spatial simulations of fire and vegetation dynamics. Ecol. Modell. 2004, 179, 3–27. [Google Scholar] [CrossRef]
- Scheller, R.M.; Domingo, J.B.; Sturtevant, B.R.; Williams, J.S.; Rudy, A.; Gustafson, E.J.; Mladenoff, D.J. Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol. Modell. 2007, 201, 409–419. [Google Scholar] [CrossRef]
- He, H.S.; Bu, R.; Yang, J.; Shifley, S.R.; Sturtevant, B.R.; Gustafson, E.J.; Mladenoff, D.J. LANDIS, a Spatially Explicit Model of Forest Landscape Disturbance, Management, and Succession—LANDIS 6.0 Pro Users Guide; University of Missouri: Columbia, MO, USA, 2009. [Google Scholar]
- Seidl, R.; Rammer, W.; Scheller, R.M.; Spies, T.A. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol. Modell. 2012, 231, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, S.; Reineking, B.; Sibold, J.; Bugmann, H. Modeling the impact of climate and vegetation on fire regimes in mountain landscapes. Landsc. Ecol. 2006, 21, 539–554. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Birdsey, R.A. Validation Databases for Simulation Models: Aboveground Biomass and Net Primary Productivity (NPP) Estimation Using Eastwide FIA Data; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 2000.
- Duveneck, M.J.; Thompson, J.R.; Gustafson, E.J.; Liang, Y.; de Bruijn, A.M.G. Recovery dynamics and climate change effects to future New England forests. Landsc. Ecol. 2016, 32, 1385–1397. [Google Scholar] [CrossRef]
- Wang, W.J.; He, H.S.; Spetich, M.A.; Shifley, S.R.; Thompson, F.R., III; Larsen, D.R.; Fraser, J.S.; Yang, J. A large-scale forest landscape model incorporating multi-scale processes and utilizing forest inventory data. Ecosphere 2013, 4, 1–22. [Google Scholar] [CrossRef]
- He, H.S.; Mladenoff, D.J.; Boeder, J. An object-oriented forest landscape model and its representation of tree species. Ecol. Modell. 1999, 119, 1–19. [Google Scholar] [CrossRef]
- Chew, J.; Stalling, C.; Moeller, K. Integrating knowledge for simulating vegetation change at landscape scales. West. J. Appl. For. 2004, 19, 102–108. [Google Scholar]
- Scheller, R.M.; Van Tuyl, S.; Clark, K.L.; Hom, J.; La Puma, I. Carbon sequestration in the New Jersey pine barrens under different scenarios of fire management. Ecosystems 2011, 14, 987–1004. [Google Scholar] [CrossRef]
- Wang, W.J.; He, H.S.; Spetich, M.A.; Shifley, S.R.; Thompson, F.R.; Dijak, W.D.; Wang, Q. A framework for evaluating forest landscape model predictions using empirical data and knowledge. Environ. Model. Softw. 2014, 62, 230–239. [Google Scholar] [CrossRef]
- Bottero, A.; D’Amato, A.W.; Palik, B.J.; Kern, C.C.; Bradford, J.B.; Scherer, S.S. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota. For. Sci. 2017, 63, 94–100. [Google Scholar] [CrossRef]
- Tuten, M.C.; Sánchez Meador, A.; Fulé, P.Z. Ecological restoration and fine-scale forest structure regulation in southwestern ponderosa pine forests. For. Ecol. Manag. 2015, 348, 57–67. [Google Scholar] [CrossRef]
- Kabrick, J.M.; Clark, K.L.; D’Amato, A.W.; Dey, D.C.; Kenefic, L.S.; Kern, C.C.; Knapp, B.O.; MacLean, D.A.; Raymond, P.; Waskiewicz, J.D. Managing hardwood-softwood mixtures for future forests in eastern North America: Assessing suitability to projected climate change. J. For. 2017, 115, 190–201. [Google Scholar] [CrossRef]
- Bonnot, T.W.; Thompson, F.R.; Millspaugh, J.J. Dynamic-landscape metapopulation models predict complex response of wildlife populations to climate and landscape change. Ecosphere 2017, 8, e1890. [Google Scholar] [CrossRef]
- Shifley, S.R.; Thompson, F.R.; Dijak, W.D.; Larson, M.A.; Millspaugh, J.J. Simulated effects of forest management alternatives on landscape structure and habitat suitability in the Midwestern United States. For. Ecol. Manag. 2006, 229, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.J.; He, H.S.; Thompson, F.R., III; Fraser, J.S.; Hanberry, B.B.; Dijak, W.D. The importance of succession, harvest, and climate change in determining future forest composition changes of the U.S. Central Hardwood Forests. Ecosphere 2015, 6, art277. [Google Scholar] [CrossRef]
- Fraser, J.S.; He, H.S.; Shifley, S.R.; Wang, W.J.; Thompson, F.R. Simulating stand-level harvest prescriptions across landscapes: LANDIS PRO harvest module design. Can. J. For. Res. 2013, 43, 972–978. [Google Scholar] [CrossRef]
- McNab, W.H.; Cleland, D.T.; Freeouf, J.A.; Keys, J.E., Jr.; Nowacki, G.J.; Carpenter, C.A. Description of Ecological Subregions: Sections of the Conterminous United States; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2007.
- Burns, R.M.; Honkala, B.H. Silvics of North America: Volume 2: Hardwoods. In Agriculture Handbook 654; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- Wang, W.J.; He, H.S.; Thompson, F.R., III; Fraser, J.S.; Dijak, W.D. Changes in forest biomass and tree species distribution under climate change in the northeastern United States. Landsc. Ecol. 2016, 32, 1399–1413. [Google Scholar] [CrossRef]
- Loehle, C. Tree life history strategies: The role of defenses. Can. J. For. Res. 1988, 18, 209–222. [Google Scholar] [CrossRef]
- Woodall, C.; Conkling, B.; Amacher, M.; Coulston, J.; Jovan, S.; Perry, C.; Schulz, B.; Smith, G.; Will Wolf, S. The Forest Inventory and Analysis Database Version 4.0: Database Description and Users Manual for Phase 3; Gen. Tech. Rep. NRS-61; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: Newtown Square, PA, USA, 2010.
- Dijak, W. Landscape Builder: Software for the creation of initial landscapes for LANDIS from FIA data. Comput. Ecol. Softw. 2013, 3, 17–25. [Google Scholar] [CrossRef]
- Regelbrugge, J.C.; Smith, D.W. Postfire tree mortality in relation to wildfire severity in mixed oak forests in the Blue Ridge of Virginia. North. J. Appl. For. 1994, 11, 90–97. [Google Scholar]
- Hély, C.; Flannigan, M.; Bergeron, Y. Modeling tree mortality following wildfire in the southeastern Canadian mixed-wood boreal forest. For. Sci. 2003, 49, 566–576. [Google Scholar]
- Woolley, T.; Shaw, D.C.; Ganio, L.M.; Fitzgerald, S. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers. Int. J. Wildl. Fire 2012, 21, 1. [Google Scholar] [CrossRef]
- Loomis, R.M. Estimating Fire-Caused Mortality and Injury in Oak-Hickory Forests; U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1973.
- Dey, D.C.; Johnson, P.S.; Garrett, H.E. Modeling the regeneration of oak stands in the Missouri Ozark Highlands. Can. J. For. Res. 1996, 26, 573–583. [Google Scholar] [CrossRef]
- Brose, P.H.; Dey, D.C.; Phillips, R.J.; Waldrop, T.A. A meta-analysis of the fire-oak hypothesis: Does prescribed burning promote oak reproduction in Eastern North America? For. Sci. 2013, 59, 322–334. [Google Scholar] [CrossRef]
- Kinkead, C.S.; Stambaugh, M.C.; Kabrick, J.M. Mortality, scarring, and growth in an oak woodland following prescribed fire and commercial thinning in the Ozark Highlands. For. Ecol. Manag. 2017, 403, 12–26. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Elliott, K.J.; Hendrick, R.L.; Major, A.E.; Vose, J.M.; Swank, W.T. Vegetation dynamics after a prescribed fire in the southern Appalachians. For. Ecol. Manag. 1999, 114, 199–213. [Google Scholar] [CrossRef]
- Dey, D.C.; Hartman, G. Returning fire to Ozark Highland forest ecosystems: Effects on advance regeneration. For. Ecol. Manag. 2005, 217, 37–53. [Google Scholar] [CrossRef]
- Hodgkins, E.J. Effects of fire on undergrowth vegetation in upland southern pine forests. Ecology 1958, 39, 36. [Google Scholar] [CrossRef]
- Waldrop, T.A.; Lloyd, F.T. Precommercial thinning a sapling-sized loblolly pine stand with fire. South. J. Appl. For. 1988, 12, 203–207. [Google Scholar] [CrossRef]
- McNab, W.H. An overcrowded loblolly pine stand thinned with fire. South. J. Appl. For. 1977, 1, 24–26. [Google Scholar] [CrossRef]
- Whittier, T.R.; Gray, A.N. Tree mortality based fire severity classification for forest inventories: A Pacific Northwest national forests example. For. Ecol. Manag. 2016, 359, 199–209. [Google Scholar] [CrossRef]
- Shaw, J.D.; Goeking, S.A.; Menlove, J.; Werstak, C.E. Assessment of fire effects based on Forest Inventory and Analysis data and a long-term fire mapping data set. J. For. 2017, 115, 258–269. [Google Scholar] [CrossRef]
- Lucash, M.S.; Scheller, R.M.; Kretchun, A.M.; Clark, K.L.; Hom, J. Impacts of fire and climate change on long-term nitrogen availability and forest productivity in the New Jersey Pine Barrens. Can. J. For. Res. 2014, 44, 404–412. [Google Scholar] [CrossRef]
- Luo, X.; He, H.; Liang, Y.; Wang, W.; Wu, Z.; Fraser, J. Spatial simulation of the effect of fire and harvest on aboveground tree biomass in boreal forests of Northeast China. Landsc. Ecol. 2014, 29, 1187–1200. [Google Scholar] [CrossRef]
- Lenihan, J.M.; Bachelet, D.; Neilson, R.P.; Drapek, R. Simulated response of conterminous United States ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth response to CO2. Glob. Planet. Chang. 2008, 64, 16–25. [Google Scholar] [CrossRef]
- Yospin, G.I.; Bridgham, S.D.; Neilson, R.P.; Bolte, J.P.; Bachelet, D.M.; Gould, P.J.; Harrington, C.A.; Kertis, J.A.; Evers, C.; Johnson, B.R. A new model to simulate climate-change impacts on forest succession for local land management. Ecol. Appl. 2015, 25, 226–242. [Google Scholar] [CrossRef]
- Liu, S.; Bond-Lamberty, B.; Hicke, J.A.; Vargas, R.; Zhao, S.; Chen, J.; Edburg, S.L.; Hu, Y.; Liu, J.; McGuire, A.D.; et al. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges. J. Geophys. Res. Biogeosci. 2011, 116, 1–22. [Google Scholar] [CrossRef]
Species Latin Name | Species Common Name | Biomass Percentage |
---|---|---|
Quercus alba L. | white oak | 22.5 |
Quercus velutina Lam. | black oak | 15.0 |
Quercus stellate Wangenh. | post oak | 10.5 |
Quercus rubra L. | northern red oak | 5.1 |
Pinus echinata Mill. | shortleaf pine | 4.2 |
Quercus coccinea Münchh. | scarlet oak | 4.1 |
Juniperus virginiana L. | eastern redcedar | 2.9 |
Carya tomentosa Lam. | mockernut hickory | 2.6 |
Carya texana Buckley | black hickory | 2.5 |
Acer saccharum Marshall | sugar maple | 2.5 |
Species Latin Name | Species Common Name | Biomass Percentage |
---|---|---|
Pinus taeda L. | loblolly pine | 38.0 |
Quercus nigra L. | water oak | 10.9 |
Liquidambar styraciflua L. | sweetgum | 7.1 |
Pinus elliottii Engelm. | slash pine | 4.6 |
Quercus laurifolia Michx. | laurel oak | 4.0 |
Liriodendron tulipifera L. | yellow-poplar | 3.2 |
Quercus alba L. | white oak | 2.3 |
Pinus palustris Mill. | longleaf pine | 2.3 |
Pinus echinata Mill. | shortleaf pine | 2.2 |
Nyssa sylvatica Marshall | blackgum | 2.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraser, J.S.; Wang, W.J.; He, H.S.; Thompson, F.R., III. Modeling Post-Fire Tree Mortality Using a Logistic Regression Method within a Forest Landscape Model. Forests 2019, 10, 25. https://doi.org/10.3390/f10010025
Fraser JS, Wang WJ, He HS, Thompson FR III. Modeling Post-Fire Tree Mortality Using a Logistic Regression Method within a Forest Landscape Model. Forests. 2019; 10(1):25. https://doi.org/10.3390/f10010025
Chicago/Turabian StyleFraser, Jacob S., Wen J. Wang, Hong S. He, and Frank R. Thompson, III. 2019. "Modeling Post-Fire Tree Mortality Using a Logistic Regression Method within a Forest Landscape Model" Forests 10, no. 1: 25. https://doi.org/10.3390/f10010025
APA StyleFraser, J. S., Wang, W. J., He, H. S., & Thompson, F. R., III. (2019). Modeling Post-Fire Tree Mortality Using a Logistic Regression Method within a Forest Landscape Model. Forests, 10(1), 25. https://doi.org/10.3390/f10010025