Color Stabilization of Siberian and European Larch Wood Using UVA, HALS, and Nanoparticle Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Material
2.2. Application of Color Stabilizers
2.3. Artificial Ageing (AA)
2.4. Color Measurements
- ∆EP*—total color difference of wood after pretreatment application;
- ∆E50*—total color difference between the initial color of wood and color after 50 h of AA;
- ∆E160*—total color difference between the initial color of wood and color after 160 h of AA;
- ∆E320*—total color difference between the initial color of wood and color after 320 h of AA.
2.5. Gloss Measurements
2.6. Visual Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Initial Properties of Tested Samples
3.2. Total Color Difference during AA
3.3. Color Parameters L*, a*, b* during AA
3.4. Gloss Change during AA
3.5. Visual Performance during AA
3.6. Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cristea, M.V.; Riedl, B.; Blanchet, P. Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Prog. Org. Coat. 2010, 69, 432–441. [Google Scholar] [CrossRef]
- Evans, P.; Haase, J.; Seman, A.S.B.M.; Kiguchi, M. The search for durable exterior clear coatings for wood. Coatings 2015, 5, 830–864. [Google Scholar] [CrossRef]
- Feist, W.C. Outdoor wood weathering and protection. In Archaeological Wood: Properties, Chemistry, and Preservation; Rowell, R.M., Barbour, R.J., Eds.; American Chemical Society: Washington, DC, USA, 1989; pp. 263–298. [Google Scholar]
- Evans, P.D. Weathering and photoprotection of wood. In Development of Commercial Wood Preservatives: Efficacy, Environmental, and Health Issues; Schultz, T.P., Militz, H., Freeman, M.H., Goodell, B., Nicholas, D.D., Eds.; ACS Symposium Series 982; American Chemical Society: Washington, DC, USA, 2008; Chapter 5; pp. 69–117. ISBN 978-0-8412-3951-7. [Google Scholar]
- Teacà, C.A.; Rosu, D.; Bodîrlàu, R.; Rosu, L. Structural changes in wood under artificial UV light irradiation by FTIR spectroscopy and color measurements—A brief review. BioResources 2013, 8, 1478–1507. [Google Scholar] [CrossRef]
- Pandey, K.K. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym. Degrad. STable 2005, 87, 375–379. [Google Scholar] [CrossRef]
- Dawson, B.S.; Singh, A.P.; Kroese, H.W.; Schwitzer, M.A.; Gallagher, S.; Riddiough, S.J.; Wu, S. Enhancing exterior performance of clear coatings through photostabilization of wood. Part 2: Coating and weathering performance. J. Coat. Technol. Res. 2008, 5, 207–219. [Google Scholar] [CrossRef]
- Tolvaj, L.; Faix, O. Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L* a* b* color measurements. 1. Effect of UV light. Holzforschung 1995, 49, 397–404. [Google Scholar] [CrossRef]
- Feist, W.C. Weathering of wood in structural uses. In Structural Uses of Wood in Adverse Environments; Van Nostrand Reinhold Company: New York, NY, USA, 1982; pp. 156–178. [Google Scholar]
- Hon, D.N.S.; Chang, S.T. Surface degradation of wood by ultraviolet light. J. Polym. Sci. A. Polym. Chem. 1984, 22, 2227–2241. [Google Scholar] [CrossRef]
- Hayoz, P.; Peter, W.; Rogez, D. A new innovative stabilization method for the protection of natural wood. Prog. Org. Coat. 2003, 48, 297–309. [Google Scholar] [CrossRef]
- Sehlstedt-Persson, M. Color responses to heat-treatment of extractives and sap from pine and spruce. In Proceedings of the 8th IUFRO International Wood Drying Conference: Improvement and Innovation in Wood Drying: A Major Issue for a Renewable Material, Brasov, Romania, 24–29 August 2003; Faculty of Wood Industry, Transilvania University of Brasov: Brasov, Romania, 2003; pp. 459–464. [Google Scholar]
- Oltean, L.; Teischinger, A.; Hansmann, C. Wood surface discoloration due to simulated indoor sunlight exposure. Holz. Roh. Werkst. 2008, 66, 51. [Google Scholar] [CrossRef]
- Schaller, C.H.; Rogez, D. New approaches in wood coating stabilization. J. Coat. Technol. Res. 2007, 4, 401–409. [Google Scholar] [CrossRef]
- Gaylarde, C.C.; Morton, L.H.G.; Loh, K.; Shirakawa, M.A. Biodeterioration of Extrenal Architectural Paint Films—A Review. Int. Biodeterior. Biodegrad. 2011, 65, 1189–1198. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. The multifactorial aspect of wood weathering: A review based on a holistic approach of wood degradation protected by clear coating. BioResources 2018, 13, 2116–2138. [Google Scholar] [CrossRef]
- Macleod, I.T.; Scully, A.D.; Ghiggino, K.P.; Ritchie, P.J.A.; Paravagna, O.M.; Leary, B. Photodegradation at the wood-clearcoat interface. Wood Sci. Technol. 1995, 29, 183–189. [Google Scholar] [CrossRef]
- Pánek, M.; Reinprecht, L. Color stability and surface defects of naturally aged wood treated with transparent paints for exterior constructions. Wood Res. 2014, 59, 421–430. [Google Scholar]
- Capobianco, G.; Calienno, L.; Pelosi, C.; Scacchi, M.; Bonifazi, G.; Agresti, G.; Picchio, R.; Santamaria, U.; Serranti, S.; Monaco, A.L. Protective behaviour monitoring on wood photo-degradation by spectroscopic techniques coupled with chemometrics. Spectrochim. Acta A 2017, 172, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.C.; Tudor, D.; Mansourian, Y.; Cooper, P.A. The effects of several commercial wood coatings on the deterioration of biological pigments in wood exposed to UV light. Wood Sci. Technol. 2013, 47, 457–466. [Google Scholar] [CrossRef]
- Miklečić, J.; Turkulin, H.; Jirouš-Rajković, V. Weathering performance of surface of thermally modified wood finished with nanoparticles-modified waterborne polyacrylate coatings. Appl. Surf. Sci. 2017, 408, 103–109. [Google Scholar] [CrossRef]
- Weichelt, F.; Emmler, R.; Flyunt, R.; Beyer, E.; Buchmeiser, M.R.; Beyer, M. ZnO-Based UV Nanocomposites for Wood Coatings in Outdoor Applications. Macromol. Mater. Eng. 2010, 295, 130–136. [Google Scholar] [CrossRef]
- Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers. Appl. Surf. Sci. 2007, 253, 3737–3745. [Google Scholar] [CrossRef]
- Auclair, N.; Riedl, B.; Blanchard, V.; Blanchet, P. Improvement of photoprotection of wood coatings by using inorganic nanoparticles as ultraviolet absorbers. For. Prod. J. 2011, 61, 20–27. [Google Scholar] [CrossRef]
- Chang, T.C.; Hsiao, N.C.; Yu, P.C.; Chang, S.T. Exploitation of Acacia confusa heartwood extract as natural photostabilizers. Wood Sci. Technol. 2015, 49, 811–823. [Google Scholar] [CrossRef]
- Forsthuber, B.; Grüll, G. The effects of HALS in the prevention of photodegradation of acrylic clear topcoats and wooden surfaces. Polym. Degrad. STable 2010, 95, 746–755. [Google Scholar] [CrossRef]
- Vollmer, S. High Performance Clear-Coat Systems for Wood Used Outdoors. Dissertation Thesis, University of British Columbia, Vancouver, BC, Canada, 2011. Available online: https://open.library.ubc.ca/cIRcle/collections/24/items/1.0071690 (accessed on 12 September 2018).
- Mishra, P.K.; Giagli, K.; Tsalagkas, D.; Mishra, H.; Talegaonkar, S.; Gryc, V.; Wimmer, R. Changing face of wood science in modern era: Contribution of nanotechnology. Recent Pat. Nanotechnol. 2018, 12, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Wicks, J.R.; Jones, F.N.; Pappas, S.P.; Wicks, D.A. Organic Coatings Science and Technology, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Chapter 5; pp. 97–120. ISBN 978-0-471-69806-7. [Google Scholar]
- Yongji, Y.; Shichen, H.; Zhixian, J.; Yaoxing, H. Study on Pre-treatment of Southern Pine Wood with High Performance Hybrid Light Stabilizers. Paint Coat. Ind. 2011, 41, 5–9. [Google Scholar]
- European Committee for Standardization. (EN) 350: 2016 Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Grüll, G.; Forsthuber, B.; Ecker, M. Sensitivity of waterborne coatings materials to high acidity and high content of arabinobalactan in larch heartwood. Prog. Org. Coat. 2016, 101, 367–378. [Google Scholar] [CrossRef]
- Bergstedt, A.; Lyck, C.H. Larch Wood: A Literature Review; Forest & Landscape Working Papers No. 23-2007; Forest & Landscape Denmark: Copenhagen/Hørsholm, Denmark, 2007; ISBN 978-87-7903-337-5. [Google Scholar]
- Rogez, D. Color stabilization of wood and durability improvement of wood coatings: A new UV light-protection concept for indoor and outdoor applications. Paint Coat. Ind. 2002, 18, 56–65. [Google Scholar]
- Kataoka, Y.; Kiguchi, M. Depth profiling of photo-induced degradation in wood by FT-IR microspectroscopy. J. Wood Sci. 2001, 47, 325–327. [Google Scholar] [CrossRef]
- ISO 11664-4. Colorimetry—Part 4: CIE 1976 L*a*b* Color Space; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- ISO 11664-6. Colorimetry—Part 6: CIEDE2000 Color-Difference Formula; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- ISO 2813. Paints and Varnishes—Determination of Gloss Value at 20 Degrees, 60 Degrees and 85 Degrees; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Temiz, A.; Terziev, N.; Eikenes, M.; Hafren, J. Effect of accelerated weathering on surface chemistry of modified wood. Appl. Surf. Sci. 2007, 253, 5355–5362. [Google Scholar] [CrossRef]
- Reinprecht, L.; Pánek, M. Effects of wood roughness, light pigments, and water repellent on the color stability of painted spruce subjected to natural and accelerated weathering. BioResources 2015, 10, 7203–7219. [Google Scholar] [CrossRef]
- Bonifazi, G.; Calienno, L.; Capobianco, G.; Monaco, A.L.; Pelosi, C.; Picchio, R.; Serranti, S. A new approach for the modelling of chestnut wood photo-degradation monitored by different spectroscopic techniques. Environ. Sci. Pollut. R. 2017, 24, 13874–13884. [Google Scholar] [CrossRef]
- Blanchard, V.; Blanchet, P. Color stability for wood products during use: Effects of inorganic nanoparticles. BioResources 2011, 6, 1219–1229. [Google Scholar]
- Kalendová, A.; Kalenda, P. Coating Technology, I.: Binders, Solvents and Additives for Coatings; Publishing Centre of University of Pardubice: Pardubice, Czech Republic, 2004; 120p, ISBN 80-7194-691-5. [Google Scholar]
- Gierlinger, N.; Jacques, D.; Schwanninger, M.; Wimmer, R.; Pâques, L.E. Heartwood extractives and lignin content of different larch species (Larix sp.) and relationships to brown-rot decay-resistance. Trees 2004, 18, 230–236. [Google Scholar] [CrossRef]
- Truskaller, M.; Forsthuber, B.; Grüll, G. Surface properties of heartwood from European and Siberian Larch. In Proceedings of the 9th International Woodcoating Congress, Amsterdam, Netherlands, 14–15 October 2014. [Google Scholar]
- Olsson, S. Enhancing UV Protection of Clear Coated Exterior Wood by Reactive UV Absorber and Epoxy Functional Vegetable Oil. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2014. [Google Scholar]
- Nikolic, M.; Lawther, J.M.; Sanadi, A.R. Use of nanofillers in wood coatings: A scientific review. J. Coat. Technol. Res. 2015, 12, 445–461. [Google Scholar] [CrossRef]
- Ozdemir, T.; Hiziroglu, S. Influence of surface roughness and species on bond strength between the wood and the finish. For. Prod. J. 2009, 59, 90–94. [Google Scholar]
- Gobakken, L.R.; Lebow, P.K. Modelling mould growth on coated modified and unmodified wood substrates exposed outdoors. Wood Sci. Technol. 2010, 44, 315–333. [Google Scholar] [CrossRef]
- Ozgenc, O.; Hiziroglu, S.; Yildiz, U.C. Weathering properties of wood species treated with different coating applications. BioResources 2012, 7, 4875–4888. [Google Scholar] [CrossRef]
- Ozgenc, O.; Okan, O.T.; Yildiz, U.C.; Deniz, I. Wood surface protection against artificial weathering with vegetable seed oils. BioResources 2013, 8, 6242–6262. [Google Scholar] [CrossRef]
- De Meijer, M. Review on the durability of exterior wood coatings with reduced VOC-content. Prog. Org. Coat. 2001, 43, 217–225. [Google Scholar] [CrossRef]
- Ghosch, S.C.; Militz, H.; Mai, C. Natural weathering of Scots pine (Pinus sylvestris L.) boards modified with functionalised commercial silicone emulsions. BioResources 2009, 4, 659–673. [Google Scholar] [CrossRef]
- Afrouzi, Y.M.; Omidvar, A.; Marzbani, P. Effect of artificial weathering on the wood impregnated with Nano-Zinc Oxide. World Appl. Sci. J. 2013, 22, 1200–1203. [Google Scholar] [CrossRef]
Sign | Designation | Type of Pretreatment | Specification (Active Ingredients) | Producer | Solution | |
---|---|---|---|---|---|---|
R | - | - | - | - | - | |
P1 | NanoByk 3840 | nanoparticles | 40% dispersion of ZnO nanoparticles (40 nm) | Byk, Wesel, Germany | 3% | |
P2 | NanoByk 3860 | nanoparticles | 50% dispersion of ZnO nanoparticles (60 nm) | Byk, Wesel, Germany | 3% | |
P3 | AQ5 | NOR HALS | light stabilizer, further not specified | Everlight, New Taipei City, Taiwan | 3% | |
P4 | Eversorb 80 | UVA | 2-Hydroxy Phenyl Benzotriazole | Everlight, New Taipei City, Taiwan | 3% | |
P5 | Eversorb 93 | HALS | Bis(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate and Methyl (1,2,2,6,6-tetramethyl-4-piperidinyl) sebacate | Everlight, New Taipei City, Taiwan | 3% | |
P6 | Eversorb 80 + Eversorb 93 | UVA + HALS | see above | Everlight, New Taipei City, Taiwan | 1.5% + 1.5% | |
P7 | Tinuvin 5333 DW | UVA + HALS | 40% active content, further not specified | BASF, Ludwigshafen, Germany | 3% | |
P8 | Tinuvin 9945-DW | UVA | benzotriazole class | BASF, Ludwigshafen, Germany | 3% | |
P9 | Tinuvin 1130 | UVA | hydroxyphenyl-benzotriazole class | BASF, Ludwigshafen, Germany | 3% | |
P10 | Tinuvin 5151 | UVA + HALS | 2-(2-hydroxyfenyl)-benzotriazoles with HALS | BASF, Ludwigshafen, Germany | 3% | |
P11 | Tinuvin 123 | HALS | based on an amino-ether functionality | BASF, Ludwigshafen, Germany | 3% | * |
P12 | Tinuvin 99-2 | UVA | hydroxyphenyl-benzotriazole class | BASF, Ludwigshafen, Germany | 3% | * |
P13 | Tinuvin 292 | HALS | Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and Methyl (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate | BASF, Ludwigshafen, Germany | 3% | * |
P14 | Tinuvin 99-2 + Tinuvin 292 | UVA + HALS | see above | BASF, Ludwigshafen, Germany | 1.5% + 1.5% | * |
P15 | Tinuvin 99-2 + Tinuvin 123 | UVA + HALS | see above | BASF, Ludwigshafen, Germany | 1.5% + 1.5% | * |
P16 | Tinuvin 292 + Tinuvin 1130 | UVA + HALS | see above | BASF, Ludwigshafen, Germany | 1.5% + 1.5% | |
P17 | Lignostab 1198 | lignin stabilizer + HALS | lignin photooxidation inhibitor, further not specified | BASF, Ludwigshafen, Germany | 3% | |
P18 | Lignostab 1198 + Tinuvin 1130 | lignin stabilizer + HALS + UVA | see above | BASF, Ludwigshafen, Germany | 1.5% + 1.5% | * |
P19 | Lignostab 1198 + Tinuvin 99-2 | lignin stabilizer + HALS+ UVA | see above | BASF, Ludwigshafen, Germany | 1.5% + 1.5% | |
P20 | SunCare 900 | UVA | water based solution with organic light stabilizers | Bohme, Liebefeld, Switzerland | 3% |
UV Irradiance | Relative Humidity | Black Panel Temperature | Air Temperature | Water Spray |
---|---|---|---|---|
41 W/m2 | 30% | 60 °C | 45 °C | off |
Wood Species | Density at 12% Moisture Content (kg/m3) | L* | a* | b* | G* | |||||
---|---|---|---|---|---|---|---|---|---|---|
European larch | 632.5 | (17.9) | 70.0 | (4.1) | 10.9 | (1.2) | 25.9 | (0.8) | 4.7 | (0.7) |
Siberian larch | 652.7 | (15.2) | 73.9 | (1.4) | 7.2 | (0.5) | 25.0 | (2.4) | 4.6 | (0.3) |
Experimental Factors | Response Variables | |||||
---|---|---|---|---|---|---|
∆EP * | ∆E50 * | ∆E160 * | ∆E320 * | ∆GP * | ∆G320 * | |
Wood species (WS) | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * |
Pretreatment (P) | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * |
WS × P | 0.00 * | 0.54 | 0.00 * | 0.00 * | 0.00 * | 0.00 * |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | P16 | P17 | P18 | P19 | P20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Effect of Pretreatment on the Total Color Difference ∆E320 * | ||||||||||||||||||||
European larch | 0.00 * (s) | 0.26 | 1.00 | 0.00 * (s) | 0.02 * | 0.00 * (s) | 0.99 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 0.01 * | 1.00 | 0.04 * | 0.17 | 0.06 | 0.00 * | 1.00 |
Siberian larch | 0.21 | 0.97 | 1.00 | 0.12 | 0.25 | 0.00 * (s) | 0.65 | 1.00 | 0.00 * | 0.00 * (s) | 1.00 | 0.00 * | 0.01 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * (s) | 0.65 |
Effect of Pretreatment on the Total Gloss Difference ∆G320 * | ||||||||||||||||||||
European larch | 0.00 * | 0.00 * | 0.21 (s) | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * (s) | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.68 (s) | 0.00 * |
Siberian larch | 0.00 * | 0.00 * | 0.00 * (s) | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.14 (s) | 0.00 * | 0.00 * | 0.00 * | 0.00 * (s) | 0.00 * | 0.00 * | 0.00 * | 0.01 * | 0.00 * |
R | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | P16 | P17 | P18 | P19 | P20 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
European Larch | ∆L320* | −9.7 | −6.1 | −7.1 | −8.7 | −4.8 | −5.9 | −4.0 | −7.3 | −7.6 | −7.9 | −7.4 | −9.0 | −7.6 | −9.6 | −5.9 | −7.2 | −5.8 | −4.9 | −5.1 | −4.4 | −8.7 |
(1.8) | (1.6) | (1.1) | (1.0) | (3.2) | (1.2) | (1.2) | (2.8) | (2.1) | (1.5) | (1.7) | (1.2) | (2.5) | (2.4) | (4.4) | (2.6) | (2.3) | (1.4) | (3.0) | (2.8) | (1.9) | ||
∆a320* | 2.4 | 2.0 | 2.6 | 3.0 | 0.6 | 2.0 | 0.6 | 1.8 | 2.3 | 1.8 | 2.4 | 2.8 | 2.8 | 2.7 | 1.0 | 2.8 | 1.5 | 0.9 | 2.3 | 1.2 | 2.4 | |
(0.7) | (1.4) | (0.8) | (0.6) | (1.0) | (0.7) | (0.6) | (0.7) | (1.3) | (0.7) | (1.0) | (2.5) | (1.2) | (0.8) | (2.2) | (0.8) | (1.4) | (1.8) | (1.0) | (2.5) | (0.7) | ||
∆b320* | 5.3 | 1.7 | 3.6 | 8.5 | 3.8 | 4.7 | 4.1 | 5.7 | 8.0 | 5.7 | 5.0 | 4.9 | 5.4 | 5.5 | 2.2 | 6.2 | 5.1 | 6.4 | 6.1 | 4.7 | 6.1 | |
(1.0) | (0.9) | (1.4) | (1.7) | (1.9) | (1.1) | (1.7) | (0.8) | (0.7) | (1.2) | (2.3) | (3.9) | (2.3) | (0.7) | (1.7) | (1.2) | (1.8) | (1.0) | (1.6) | (1.2) | (0.8) | ||
∆E320* | 11.4 | 6.8 | 8.5 | 12.6 | 6.9 | 7.9 | 6.1 | 9.6 | 11.5 | 10.0 | 9.5 | 11.2 | 10.0 | 11.4 | 7.6 | 10.2 | 8.0 | 8.4 | 8.9 | 7.5 | 10.9 | |
(2.1) | (2.0) | (1.2) | (1.7) | (2.4) | (1.0) | (1.0) | (2.4) | (1.8) | (1.3) | (2.0) | (3.0) | (3.0) | (2.1) | (3.2) | (1.8) | (3.0) | (1.0) | (1.2) | (1.6) | (2.0) | ||
∆G320* | 0.0 | −2.2 | −1.5 | −0.8 | −1.5 | −1.6 | −2.7 | −2.9 | −1.2 | −2.0 | −2.9 | −1.3 | −1.1 | −1.4 | −1.6 | −1.7 | −2.7 | −1.2 | −1.5 | −0.6 | −1.4 | |
(0.5) | (0.5) | (0.7) | (0.3) | (0.5) | (0.4) | (0.5) | (0.5) | (0.2) | (0.3) | (1.3) | (0.4) | (0.4) | (0.5) | (0.3) | (0.2) | (1.1) | (0.2) | (0.8) | (0.2) | (0.3) | ||
Siberian Larch | ∆L320* | −7.7 | −6.3 | −7.4 | −9.9 | −5.9 | −6.3 | −2.3 | −5.0 | −6.5 | −3.2 | −0.9 | −7.4 | −5.4 | −4.3 | −3.1 | −4.7 | −4.5 | −2.6 | −2.0 | −1.9 | −5.9 |
(1.6) | (1.1) | (1.7) | (0.7) | (1.1) | (1.6) | (1.9) | (1.0) | (1.7) | (3.4) | (1.7) | (1.2) | (2.2) | (1.9) | (3.8) | (1.7) | (2.0) | (2.2) | (1.2) | (0.7) | (1.9) | ||
∆a320* | 3.0 | 3.9 | 3.6 | 4.4 | 2.5 | 2.9 | 1.6 | 2.5 | 3.3 | 1.6 | 0.4 | 3.4 | 2.2 | 1.7 | 1.6 | 1.6 | 2.6 | 1.8 | 1.9 | 0.4 | 2.2 | |
(0.6) | (0.4) | (0.4) | (0.3) | (0.5) | (0.8) | (1.2) | (0.3) | (0.6) | (1.0) | (0.4) | (0.9) | (1.6) | (1.5) | (1.3) | (0.9) | (1.4) | (1.2) | (0.8) | (0.7) | (2.1) | ||
∆b320* | 7.4 | 3.4 | 3.9 | 6.1 | 5.2 | 4.5 | 3.6 | 6.9 | 6.8 | 4.0 | 3.8 | 6.5 | 3.2 | 5.6 | 4.5 | 5.2 | 4.0 | 4.9 | 5.0 | 4.0 | 5.9 | |
(1.9) | (2.1) | (1.9) | (0.6) | (0.5) | (1.3) | (1.3) | (0.9) | (1.0) | (0.6) | (0.7) | (1.4) | (2.2) | (1.1) | (0.3) | (1.7) | (1.9) | (1.6) | (1.1) | (1.1) | (0.3) | ||
∆E320* | 11.3 | 8.4 | 9.4 | 12.5 | 8.3 | 8.5 | 4.9 | 8.9 | 10.2 | 6.1 | 4.2 | 10.5 | 6.8 | 7.6 | 6.6 | 7.5 | 6.8 | 6.0 | 5.9 | 4.6 | 8.9 | |
(1.3) | (1.1) | (1.4) | (0.8) | (1.2) | (1.2) | (1.9) | (1.2) | (0.8) | (2.4) | (1.1) | (1.4) | (3.1) | (1.0) | (2.1) | (1.4) | (2.5) | (2.5) | (1.0) | (0.8) | (1.7) | ||
∆G320* | −0.1 | −2.1 | −2.4 | −1.2 | −1.7 | −2.2 | −3.3 | −1.6 | −2.9 | −2.0 | −1.4 | −1.0 | −1.8 | −1.4 | −2.9 | −1.2 | −2.1 | −2.3 | −2.4 | −1.2 | −2.4 | |
(0.3) | (0.6) | (0.6) | (0.3) | (0.2) | (0.5) | (0.5) | (0.3) | (0.3) | (0.6) | (0.3) | (0.1) | (0.6) | (1.4) | (0.5) | (0.3) | (0.5) | (0.4) | (0.2) | (0.3) | (0.3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberhofnerová, E.; Pánek, M.; Podlena, M.; Pavelek, M.; Štěrbová, I. Color Stabilization of Siberian and European Larch Wood Using UVA, HALS, and Nanoparticle Pretreatments. Forests 2019, 10, 23. https://doi.org/10.3390/f10010023
Oberhofnerová E, Pánek M, Podlena M, Pavelek M, Štěrbová I. Color Stabilization of Siberian and European Larch Wood Using UVA, HALS, and Nanoparticle Pretreatments. Forests. 2019; 10(1):23. https://doi.org/10.3390/f10010023
Chicago/Turabian StyleOberhofnerová, Eliška, Miloš Pánek, Milan Podlena, Miloš Pavelek, and Irena Štěrbová. 2019. "Color Stabilization of Siberian and European Larch Wood Using UVA, HALS, and Nanoparticle Pretreatments" Forests 10, no. 1: 23. https://doi.org/10.3390/f10010023
APA StyleOberhofnerová, E., Pánek, M., Podlena, M., Pavelek, M., & Štěrbová, I. (2019). Color Stabilization of Siberian and European Larch Wood Using UVA, HALS, and Nanoparticle Pretreatments. Forests, 10(1), 23. https://doi.org/10.3390/f10010023