Effect of Forest Biomass Pretreatment on Essential Oil Yield and Properties
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Materials
2.2. Pretreatment Methods and Operating Conditions
2.3. Essential Oil Extraction
2.4. Physiochemical Characterization of Essential Oils
2.5. Antioxidant Properties
2.5.1. Polyphenols
2.5.2. Iron Reduction Capacity
2.6. Antimicrobial Activity of EOs
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Mechanical Pretreatments on EOs Yield
3.2. Physicochemical Properties of EOs
3.3. Antioxidant Capacity
3.3.1. Determination of Total Phenols
3.3.2. Determination of Antioxidant Capacity by Iron Reduction Method
3.4. Antibacterial Power
4. Conclusions
- Shredding, grinding, and densification of the residual forest biomass from BF and JP caused losses of EOs compared to the non-pretreated biomass (control), while densification into bundles led to an improvement in the quantity of EOs recovered. This is because the shape of the bundles improved the surface of the biomass in the presence of steam and ensured a better heat transfer between the branches. Also, the format of the bundles promoted the circulation of steam and ensured its accessibility to secretory cells during EOs extraction. Thus, this forest biomass preparation method preserved EOs quality and prevented the volatilization of the EOs compounds;
- Hydrodistillation led to the extraction of EOs with higher concentrations of monoterpenes and phenolic compounds compared to steam distillation, especially for JP and BF compacted in bundles;
- The antioxidant and the antibacterial properties of EOs depended mainly on the type of species and the concentration of total polyphenols, monoterpene compounds, and oxygenated compounds.
- EOs derived from BS were able to inhibit the growth of Gram-positive S. aureus bacteria and Gram-negative S. typhimurium and E. coli bacteria.
- This study successfully proved that it is possible to reduce the volume of the residual forest biomass (especially branches and needles) while preserving the quantity and the quality of extracted EOs.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Royer, M.; Houde, R.; Stevanovic, T. Potentiel de Développement lié aux Extractibles Forestiers: État des Connaissances et Revue des Marchés. In Volet 1: Les Extractibles Forestiers Québecois; Université Laval: Québec, QC, Canada, 2010. [Google Scholar]
- Morency, P.-O. Le Potentiel de Valorisation de la Biomasse Forestière à des fins Energétiques au Québec: État de la Situation. Master’s Thesis, Université Laval, Québec, QC, Canada, 2011. [Google Scholar]
- Golmakani, M.-T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chem. 2008, 109, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Risi, J.; Brûlé, M. Étude des huiles essentielles tirées des feuilles de quelques conifères du Québec. Can. J. Res. 1945, 23, 199–207. [Google Scholar] [CrossRef]
- Francezon, N.; Stevanovic, T. Chemical composition of essential oil and hydrosol from Picea mariana bark residue. BioResources 2017, 12, 2635–2645. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Royer, M.; Houde, R.; Stevanovic, T. Non-wood forest products based on extractives—A new opportunity for Canadian forest industry Part 2—Softwood forest species. J. Food Res. 2013, 2, 164–189. [Google Scholar] [CrossRef]
- Figueredo, G. Étude Chimique et Statistique de la Composition D’huiles Essentielles D’origans (Lamiaceae) Cultivés Issus de Graines D’origine Méditerranéenne. Ph.D. Thesis, Université Blaise Pascal—Clermont-Ferrand II, Clermont-Ferrand, France, 2007. [Google Scholar]
- Kubeczka, K.-H. History and sources of essential oil research. In Handbook of Essential Oils: Science, Technology, and Applications; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 12–47. [Google Scholar]
- Croteau, R.; Johnson, M.A. Biosynthesis of terpenoid wood extractives. In Biosynthesis and Biodegradation of Wood Components; Higuchi, T., Ed.; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Schultz, T.P.; Nicholas, D.D. Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators. Phytochemistry 2002, 61, 555–560. [Google Scholar] [CrossRef]
- Turtola, S. The Effects of Drought Stress and Enhanced UV-B Radiation on the Growth and Secondary Chemistry of Boreal Conifer and Willow Seedlings; University of Joensuu: Joensuu, Finland, 2005. [Google Scholar]
- Royer, M.; Houde, R.; Viano, Y.; Stevanovic, T. Non-wood Forest products based on extractives—A new opportunity for the Canadian forest industry Part 1: Hardwood forest species. J. Food Res. 2012, 1, 8–45. [Google Scholar] [CrossRef]
- Khajeh, M.; Yamini, Y.; Sefidkon, F.; Bahramifar, N. Comparison of essential oil composition of Carum copticum obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chem. 2004, 86, 587–591. [Google Scholar] [CrossRef]
- Vian, M.A.; Fernandez, X.; Visinoni, F.; Chemat, F. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. J. Chromatogr. A 2008, 1190, 14–17. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Smadja, J.; Lucchesi, M. Solvent Less Microwave Extraction of Natural Plants. European Patent Application EP 1.439.218.A1, 2003. [Google Scholar]
- Hamitouche, T.I. Étude de L’autovaporisation Instantanee dans l’intensification de L’extraction de L’huile Essentielle du Bois de Santal. Ph.D. Thesis, Université de La Rochelle, La Rochelle, France, 2016. [Google Scholar]
- Djerrari, A. Influence du Mode D’extraction et des Conditions de Conservation sur la Composition des Huiles Essentielles de Thym et de Basilic. Ph.D. Thesis, Université des Sciences et Techniques du Languedoc, Motpellier, France, 1986. [Google Scholar]
- Couic-Marinier, F.; Lobstein, A. Composition chimique des huiles essentielles. Actual. Pharm. 2013, 52, 22–25. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals, 2nd ed.; Elsevier Ltd: Edinburgh, UK, 2013. [Google Scholar]
- Zhang, H.; Chen, F.; Wang, X.; Yao, H.-Y. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res. Int. 2006, 39, 833–839. [Google Scholar] [CrossRef]
- Bouhlal, T.; Loukili, K.; Zidane, L.; Fadli, M. Plants used in traditional medicines by the human population of the Gharb plain (morocco). J. Med. Plants Stud. 2017, 5, 170–174. [Google Scholar]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Gabrielle, B.; Perrin, A.; Wohlfahrt, J.; Flatberg, T.; BjØrkvoll, T.; Echevarría, G.I.; Sanchez, D.; Van Der Linden, R.; Loyce, C.; Pelzer, E.; et al. Comment optimiser les chaînes d’approvisionnement en biomasse issue de cultures énergétiques? Innov. Agron. 2016, 54, 23–29. [Google Scholar]
- Ba, B.H. Modélisation et Optimisation de Chaines D’approvisionnement en Biomasses pour des Bioraffineries. Master’s Thesis, Université de Technologie de Troyes, Troyes, France, 2016. [Google Scholar]
- Tischer, B.; Vendruscolo, R.G.; Wagner, R.; Menezes, C.R.; Barin, C.S.; Giacomelli, S.R.; Budel, J.M.; Barin, J.S. Effect of grinding method on the analysis of essential oil from Baccharis articulata (Lam.) Pers. Chem. Pap. 2017, 71, 753–761. [Google Scholar] [CrossRef]
- Murthy, C.T.; Krishnamurthy, N.; Ramesh, T.; Srinivasa Rao, P.N. Effect of grinding methods on the retention of black pepper volatiles. J. Food Sci. Technol. 1996, 33, 299–301. [Google Scholar]
- Murthy, C.T.; Bhattacharya, S. Cryogenic grinding of black pepper. J. Food Eng. 2008, 85, 18–28. [Google Scholar] [CrossRef]
- Puy, N.; Murillo, R.; Navarro, M.V.; López, J.M.; Rieradevall, J.; Fowler, G.; Aranguren, I.; García, T.; Bartrolí, J.; Mastral, A.M. Valorisation of forestry waste by pyrolysis in an auger reactor. Waste Manag. 2011, 31, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Lammerink, J.; Wallace, A.R.; Porter, N.G. Effects of harvest time and postharvest drying on oil from lavandin (Lavandula × intermedia). N. Z. J. Crop Hortic. Sci. 1989, 17, 315–326. [Google Scholar] [CrossRef]
- Valarezo, E.; Castillo, A.; Guaya, D.; Morocho, V.; Malagón, O. Chemical composition of essential oils of two species of the Lamiaceae family: Scutellaria volubilis and Lepechinia paniculata from Loja, Ecuador. J. Essent. Oil Res. 2012, 24, 31–37. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Tolba, I. Détermination d’un méta-Paramètre Pour L’estimation de la Capacité Antioxydante Globale des Thés, Tisanes et jus. Master’s Thesis, Université du Québec à Trois-Rivières, Québec, QC, Canada, 2016. [Google Scholar]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef]
- Yokouchi, Y.; Ambe, Y. Factors affecting the emission of monoterpenes from red pine (Pinus densiflora). Plant Physiol. 1984, 75, 1009–1012. [Google Scholar] [CrossRef]
- Guenther, E. The Essential Oils: Volume One: History, Origin in Plants, Production; D. Van Nostrand Company, Inc.: New York, NY, USA, 1948. [Google Scholar]
- Vekiari, S.A.; Protopapadakis, E.E.; Papadopoulou, P.; Papanicolaou, D.; Panou, C.; Vamvakias, M. Composition and seasonal variation of the essential oil from leaves and peel of a cretan lemon variety. J. Agric. Food Chem. 2002, 50, 147–153. [Google Scholar] [CrossRef]
- Al Haddad, M. Contribution Théorique et Modélisation des Phénomènes Instantanés Dans les Opérations D’autovaporisation et de Déshydratation. Ph.D. Thesis, Université de La Rochelle, La Rochelle, France, 2007. [Google Scholar]
- Besombes, C. Contribution à L’étude des Phénomènes D’extraction Hydro-Thermo-Mécanique D’herbes Aromatiques. Applications Généralisées. Ph.D. Thesis, Université de La Rochelle, La Rochelle, France, 2008. [Google Scholar]
- Allaf, T.; Allaf, K. Instant Controlled Pressure Drop (D.I.C.) in Food Processing: From Fundamental to Industrial Applications; Food Engineering Series; Springer: New York, NY, USA, 2014. [Google Scholar]
- Lucchesi, M.-E. Extraction Sans Solvant Assistée par Micro-ondes Conception et Application à L’extraction des Huiles Essentielles. Ph.D. Thesis, Université de la Réunion, La Réunion, France, 2005. [Google Scholar]
- Poaty, B.; Lahlah, J.; Porqueres, F.; Bouafif, H. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J. Microbiol. Biotechnol. 2015, 31, 907–919. [Google Scholar] [CrossRef]
- Ghanmi, M.; Satrani, B.; Aafi, A.; Isamili, M.R.; Houti, H.; El Monfalouti, H.; Benchakroun, K.H.; Aberchane, M.; Harki, L.; Boukir, A.; et al. Effet de la date de récolte sur le rendement, la composition chimique et la bioactivité des huiles essentielles de l’armoise blanche (Artemisia herba-alba) de la région de Guerçif (Maroc oriental). Phytothérapie 2010, 8, 295–301. [Google Scholar] [CrossRef]
- Podsędek, A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.-J. Food applications of chitin and chitosans. Trends Food Sci. Technol. 1999, 10, 37–51. [Google Scholar] [CrossRef]
- Jerez, M.; Selga, A.; Sineiro, J.; Torres, J.L.; Núñez, M.J. A comparison between bark extracts from Pinus pinaster and Pinus radiata: Antioxidant activity and procyanidin composition. Food Chem. 2007, 100, 439–444. [Google Scholar] [CrossRef]
- Preston, C.M.; Bhatti, J.S.; Norris, C.E. Chemical quality of aboveground litter inputs for jack pine and black spruce stands along the Canadian Boreal Forest Transect Case Study. Écoscience 2014, 21, 202–216. [Google Scholar] [CrossRef]
- Stevanovic, T.; Diouf, P.; Garcia-Perez, M. Bioactive polyphenols from healthy diets and forest biomass. Curr. Nutr. Food Sci. 2009, 5, 264–295. [Google Scholar] [CrossRef]
- Bougandoura, N.; Bendimerad, N. Evaluation de l’activité antioxydante des extraits aqueux et méthanolique de Satureja calamintha ssp. Nepeta (L.) Briq. Nat. Technol. 2013, 5, 14–19. [Google Scholar]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Lau, X.C.; Chong, K.H.; Poh, B.K.; Ismail, M.N. Physical activity, fitness and the energy cost of activities. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2013; Volume 70, pp. 49–101. [Google Scholar]
- Lagha-Benamrouche, S.; Madani, K. Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Ind. Crops Prod. 2013, 50, 723–730. [Google Scholar] [CrossRef]
- Ponce, A.G.; Fritz, R.; del Valle, C.; Roura, S.I. Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT Food Sci. Technol. 2003, 36, 679–684. [Google Scholar] [CrossRef]
- Moreira, M.R.; Ponce, A.G.; del Valle, C.E.; Roura, S.I. Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Sci. Technol. 2005, 38, 565–570. [Google Scholar] [CrossRef]
- Chan, E.C.S.; Pelczar, M.J.; Krieg, N.R. Microbiology, 5th ed.; Tata McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Chao, S.C.; Young, D.G.; Oberg, C.J. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J. Essent. Oil Res. 2000, 12, 639–649. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994, 269, 8022–8028. [Google Scholar] [PubMed]
- Abi-Ayad, M.; Abi-Ayad, F.Z.; Lazzouni, H.A.; Rebiahi, S.A. Antibacterial activity of Pinus halepensisessential oil from Algeria (Tlemcen). J. Nat. Prod. Plant Resour. 2011, 1, 33–36. [Google Scholar]
Strain | ATCC Number | Coloration Gram | Characteristics |
---|---|---|---|
P. aeruginosa | 27853 | G- | Susceptible, wild type |
S. typhimurium | 14028 | G- | Susceptible |
E. coli | 25922 | G- | Susceptible, wild type |
S. aureus | 23235 | G+ | Weak β-lactamase producer |
Source of Variation | Yield | Antioxidant Capacity | Antibacterial Activity | |
---|---|---|---|---|
Total Phenol Content | Capacity for Iron Reduction | |||
DF | 5 | 2 | 1 | 3 |
Significant coefficient | p-value | p-value | p-value | p-value |
Species | <2E-16 ** | 8.83E-05 ** | <2.57E-11 ** | 1.16E-08 ** |
Level | 4.39E-10 ** | 0.207 * | 0.08741 * | 0.71661 * |
Extraction method | 0.076266 * | 0.018651 ** | 0.08741 * | 0.00137 ** |
Species*Level | 5.82E-06 ** | 0.092295* | 0.02308** | 0.00165** |
Level*Extraction method | 0.433434 * | 0.233495 * | 0.00185 ** | 0.19502 * |
Species*Extraction method | <2E-16 ** | 0.765927 * | <2E-16 ** | 7.84E-05 ** |
Species*Level*Extraction method | 0.000604 ** | 0.001351 ** | 0.00494 ** | 0.01560 ** |
R2 | 0.96 | 0.62 | 0.84 | 0.69 |
Pretreatment | Species | Method | 3-Carene (µg/mL) | Limonene (µg/mL) | Camphene (µg/mL) | β-Pinene (µg/mL) | α-Pinene (µg/mL) | Total Phenol (mg per g gallic acid of EO) |
---|---|---|---|---|---|---|---|---|
Control | BF | HD | 19.2 | 177.5 | 69.1 | 357.9 | 103.5 | 186.03 |
SD | 1.3 | 125.1 | 119.0 | 409.2 | 82.5 | 178.73 | ||
BS | HD | 107.2 | 46.7 | 156.5 | 68.14 | 173.5 | 138.9 | |
SD | 122.2 | 73.6 | 139.1 | 30.2 | 117 | 191.66 | ||
JP | HD | 32.0 | 38.2 | 26.81 | 74.5 | 189.4 | 178.13 | |
SD | 29.5 | 51.4 | 24.8 | 139.7 | 159.1 | 231.56 | ||
50 kN | BF | HD | 103.7 | 317.9 | 54.9 | 289.2 | 110.8 | 180.53 |
SD | 7.7 | 128.6 | 62.2 | 388.5 | 88.2 | 199.76 | ||
BS | HD | 40.1 | 70.5 | 122.9 | 20.5 | 63.5 | 191.66 | |
SD | 44.1 | 73.0 | 58.8 | 38.7 | 64.6 | 210.3 | ||
JP | HD | 81.3 | 110.7 | 40.8 | 124.7 | 318.1 | 282.83 | |
SD | 102.4 | 51.0 | 29.8 | 116.4 | 248.2 | 209.86 |
Method of Extraction | Hydrodistillation | Steam Distillation | |||||||
---|---|---|---|---|---|---|---|---|---|
Species | Strain | Strain | |||||||
E. coli | S. typhimurium | P. aieuroginosa | S. aureus | E. coli | S. typhimurium | P. aieuroginosa | S. aureus | ||
BF | Control | + | - | + | - | - | - | + | - |
10 kN | + | - | - | - | + | - | - | - | |
20 kN | + | - | - | - | + | + | - | - | |
30 kN | + | - | + | + | + | + | + | + | |
40 kN | + | - | + | - | + | - | ++ | + | |
50 kN | ++ | - | - | + | + | - | - | + | |
BS | Control | +++ | ++ | + | +++ | +++ | + | + | + |
10 kN | + | + | - | + | ++ | ++ | - | ++ | |
20 kN | + | - | + | + | - | + | + | - | |
30 kN | +++ | - | - | +++ | + | ++ | + | + | |
40 kN | +++ | ++ | + | +++ | ++ | ++ | - | ++ | |
50 kN | +++ | +++ | - | +++ | ++ | ++ | - | ++ | |
JP | Control | + | - | - | + | + | - | - | + |
10 kN | - | - | - | + | - | - | - | + | |
20 kN | - | - | - | + | +++ | ++ | - | ++ | |
30 kN | + | + | - | + | ++ | + | - | + | |
40 kN | - | - | - | ++ | ++ | + | + | ++ | |
50 kN | - | - | - | ++ | +++ | + | - | +++ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hmaied, M.; Bouafif, H.; Magdouli, S.; Braghiroli, F.L.; Koubaa, A. Effect of Forest Biomass Pretreatment on Essential Oil Yield and Properties. Forests 2019, 10, 1042. https://doi.org/10.3390/f10111042
Hmaied M, Bouafif H, Magdouli S, Braghiroli FL, Koubaa A. Effect of Forest Biomass Pretreatment on Essential Oil Yield and Properties. Forests. 2019; 10(11):1042. https://doi.org/10.3390/f10111042
Chicago/Turabian StyleHmaied, Mayssa, Hassine Bouafif, Sara Magdouli, Flavia Lega Braghiroli, and Ahmed Koubaa. 2019. "Effect of Forest Biomass Pretreatment on Essential Oil Yield and Properties" Forests 10, no. 11: 1042. https://doi.org/10.3390/f10111042
APA StyleHmaied, M., Bouafif, H., Magdouli, S., Braghiroli, F. L., & Koubaa, A. (2019). Effect of Forest Biomass Pretreatment on Essential Oil Yield and Properties. Forests, 10(11), 1042. https://doi.org/10.3390/f10111042