Histological Observation of Primary and Secondary Aerenchyma Formation in Adventitious Roots of Syzygium kunstleri (King) Bahadur and R.C.Gaur Grown in Hypoxic Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatment
2.2. Preparation of Samples
2.3. Observation of Aerenchyma Formation
3. Results
3.1. Distribution of Aerenchyma in Syzygium kunstleri Adventitious Root
3.1.1. Primary Aerenchyma in Cortex
3.1.2. Development of Periderm and Secondary Aerenchyma
3.2. Proportion of Cortex, Periderm, and Stele in Each Adventitious Root Cross Section
3.3. Comparison between Different Treatments
4. Discussion
4.1. Development and Spatial Patterns of Primary Aerenchyma in Cortex
4.2. Development and Spatial Pattern of Secondary Aerenchyma in Periderm
4.3. Function as Oxygen Transportation Pathway in Primary and Secondary Aerenchyma
4.4. Comparison among the Different Treatments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyer, J.S. Plant productivity and environment. Science 1982, 218, 443–448. [Google Scholar] [CrossRef]
- Abiko, T.; Kotula, L.; Shiono, K.; Malik, A.I.; Colmer, T.D.; Nakazono, M. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. 2012, 35, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Dawood, T.; Rieu, I.; Wolters-Arts, M.; Derksen, E.B.; Mariani, C.; Visser, E.J.W. Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB Plants 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Grable, A.R. Soil aeration and plant growth. In Advances in Agronomy; Normane, A.G., Ed.; Academic Press: San Diego, CA, USA, 1966; Volume 18, pp. 57–106. [Google Scholar]
- Yamauchi, T.; Watanabe, K.; Fukazawa, A.; Mori, H.; Abe, F.; Kawaguchi, K.; Oyanagi, A.; Nakazono, M. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. J. Exp. Bot. 2013, 65, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Koevoets, I.T.; Venema, J.H.; Elzenga, J.T.M.; Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 2016, 7, 1335. [Google Scholar] [CrossRef]
- Armstrong, W. Aeration in higher plants. In Advances in Botanical Research; Woolhouse, H.W., Ed.; Academic Press: San Diego, CA, USA, 1980; Volume 7, pp. 225–332. [Google Scholar]
- Dacey, J.W.H. Internal winds in water lilies: An adaptation for life in anaerobic sediments. Science 1980, 210, 1017–1019. [Google Scholar] [CrossRef]
- Drew, M.C.; Saglio, P.H.; Pradet, A. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen-transport. Planta 1985, 165, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Drew, M.C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Biol. 1997, 48, 223–250. [Google Scholar] [CrossRef]
- Shimamura, S.; Yoshida, S.; Mochizuki, T. Cortical aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Ann. Bot. 2007, 100, 1431–1439. [Google Scholar] [CrossRef]
- Takahashi, H.; Yamauchi, T.; Colmer, T.D.; Nakazono, M. Aerenchyma formation in plants. In Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Response to Hypoxia; van Dongen, J.T., Licausi, F., Eds.; Plant Cell Monographs: Vienna, Austria, 2014; pp. 247–265. [Google Scholar]
- Evans, D.E. Aerenchyma formation. New phytol. 2004, 161, 35–49. [Google Scholar] [CrossRef]
- Folzer, H.; Dat, J.F.; Capelli, N.; Rieffel, D.; Badot, P.M. Response of sessile oak seedlings (Quercus petraea) to flooding: An integrated study. Tree Physiol. 2006, 26, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Drew, M.C.; He, C.J.; Morgan, P.W. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 2000, 5, 123–127. [Google Scholar] [CrossRef]
- Drew, M.C.; Jackson, M.B.; Giffard, S. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 1979, 147, 83–88. [Google Scholar] [CrossRef]
- Drew, M.C.; Jackson, M.B.; Giffard, S.C.; Campbell, R. Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 1981, 153, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Gunawardena, A.H.; Pearce, D.M.; Jackson, M.B.; Hawes, C.R.; Evans, D.E. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 2001, 212, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Justin, S.H.F.W.; Armstrong, W. Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol. 1991, 118, 49–62. [Google Scholar] [CrossRef]
- Arikado, H.; Adachi, Y. Anatomical and ecological responses of barley and some forage crops to the flooding treatment. Bull. Fac. Agric. Mie. Univ. 1955, 11, 1–29. [Google Scholar]
- Huang, B.; Johnson, J.W.; Box, J.E.; NeSmith, D.S. Root characteristics and hormone activity of wheat in response to hypoxia and ethylene. Crop Sci. 1997, 37, 812–818. [Google Scholar] [CrossRef]
- Trought, M.C.T.; Drew, M.C. Development of waterlogging damage in wheat seedlings (Triticum aestivum L.). 1. Shoot and root growth in relation to changes in the concentrations of dissolved gases and solutes in the soil solution. Plant Soil 1980, 54, 77–94. [Google Scholar] [CrossRef]
- Laan, P.; Berrevoets, M.J.; Lythe, S.; Armstrong, W.; Blom, C.W.P.M. Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. J. Ecol. 1989, 77, 693–703. [Google Scholar] [CrossRef]
- Jackson, M.B.; Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1999, 1, 274–287. [Google Scholar] [CrossRef]
- Colmer, T.D.; Peeters, A.J.M.; Wagemaker, C.A.M.; Vriezen, W.H.; Ammerlaan, A.; Voesenek, L.A.C.J. Expression of a-expansin genes during root acclimations to O2 deficiency in Rumex palustris. Plant Mol. Biol. 2004, 56, 423–437. [Google Scholar] [CrossRef]
- Schussler, E.E.; Longstreth, D.J. Aerenchyma develops by cell lysis in roots and cell separation in leaf petioles in Sagittaria lancifolia (Alismataceae). Am. J. Bot. 1996, 83, 1266–1273. [Google Scholar] [CrossRef]
- Shimamura, S.; Yamamoto, R.; Nakamura, T.; Shimada, S.; Komatsu, S. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann. Bot. 2010, 106, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimamura, S.; Mochizuki, T.; Nada, Y.; Fukuyama, M. Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 2003, 251, 351–359. [Google Scholar] [CrossRef]
- Stevens, K.J.; Peterson, R.L.; Reader, R.J. The aerenchymatous phellem of Lythrum salicaria (L.): A pathway for gas transport and its role in flood tolerance. Ann. Bot. 2002, 89, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Lempe, J.; Stevens, K.J.; Peterson, R.L. Shoot responses of six Lythraceae Species to flooding. Plant Biology 2001, 3, 186–193. [Google Scholar] [CrossRef]
- Stevens, K.J.; Peterson, R.L.; Stephenson, G.R. Morphological and anatomical responses of Lythrum salicaria L. (Purple Loosestrife) to an imposed water gradient. Int. J. Plant Sci. 1997, 158, 172–183. [Google Scholar]
- Scott, D.H.; Wager, H. On the floating-roots of Sesbania aculeata, Pers: With plate xvii. Ann. Bot. 1888, 1, 307–314. [Google Scholar] [CrossRef]
- Shiba, H.; Daimon, H. Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata. Plant Soil 2003, 255, 209–215. [Google Scholar] [CrossRef]
- Saraswati, R.; Matoh, T.; Sekiya, J. Nitrogen fixation of Sesbania rostrata: Contribution of stem nodules to nitrogen acquisition. Soil Sci. Plant Nutr. 1992, 38, 775–780. [Google Scholar] [CrossRef]
- Metcalfe, C.R. The “aerenchyma” of Sesbania and Neptunia. Bull. Misc. Inf. (Royal Bot. Gard., Kew) 1931, 1931, 151–154. [Google Scholar] [CrossRef]
- Walker, B.A.; Pate, J.S.; Kuo, J. Nitrogen fixation by nodulated roots of Viminaria juncea (Schrad. and Wendl.) Hoffmans (Fabaceae) when submerged in water. Aust. J. Plant Physiol. 1983, 10, 409–421. [Google Scholar] [CrossRef]
- Yamauchi, T.; Shimamura, S.; Nakazono, M.; Mochizuki, T. Aerenchyma formation in crop species: A review. Field Crop. Res. 2013, 152, 8–16. [Google Scholar] [CrossRef]
- Rich, S.M.; Ludwig, M.; Pederson, O.; Colmer, T.D. Aquatic adventitious roots of the wetland plant Meionectes brownie can photosynthesize: Implications for root function during flooding. New Phytol. 2011, 190, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Moog, P.R. Flooding tolerance of Carex species. I. Root structure. Planta 1998, 207, 189–198. [Google Scholar] [CrossRef]
- Somavilla, N.S.; Graciano-Ribeiro, D. Ontogeny and characterization of aerenchymatous tissues of Melastomataceae in the flooded and well-drained soils of a Neotropical savanna. Flora 2012, 207, 212–222. [Google Scholar] [CrossRef]
- Thomas, A.L.; Guerreiro, S.M.C.; Sodek, L. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 2005, 96, 1191–1198. [Google Scholar] [CrossRef]
- Shimamura, S.; Yoshioka, T.; Yamamoto, R.; Hiraga, S.; Nakamura, T.; Shimada, S.; Komatsu, S. Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod. Sci. 2014, 17, 131–137. [Google Scholar] [CrossRef]
- Shimamura, S.; Nishimura, T.; Koshiba, T.; Yamamoto, R.; Hiraga, S.; Nakamura, T.; Komatsu, S. Effects of anti-auxins on secondary aerenchyma formation in flooded soybean hypocotyls. Plant Prod. Sci. 2016, 19, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Masumori, M.; Yamanoshita, T.; Tange, T. Morphological and anatomical changes of Melaleuca cajuputi under submergence. Trees 2011, 25, 695–704. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Kendrick, B.; Peterson, C.A. Efficient lipid staining in plant material with sudan red 7b or fluoral yellow 088 in polyethylene glycol-glycerol. Biotech. Histochem. 1991, 66, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Lux, A.; Morita, S.; Abe, J.; Ito, K. An improved method for clearing and staining free-hand sections and whole-mount samples. Ann. Bot. 2005, 96, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Visser, E.J.W.; Bogemann, G.M. Measurement of porosity in very small samples of plant tissue. Plant Soil 2003, 253, 81–90. [Google Scholar] [CrossRef]
- Burton, A.L.; Williams, M.; Lynch, J.P.; Brown, K.M. Rootscan: Software for high-throughput analysis of root anatomical traits. Plant Soil 2012, 357, 189–203. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Yanai, R.D. The ecology of root lifespan. In Advances in Ecological Research; Begon, M., Fitter, A.H., Eds.; Academic Press: San Diego, CA, USA, 1997; Volume 27, pp. 1–60. [Google Scholar]
- De Simone, O.; Haase, K.; Muller, E.; Junk, W.J.; Gonsior, G.; Schmidt, W. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two central amazon floodplain tree species. Funct. Plant Biol. 2002, 29, 1025–1035. [Google Scholar] [CrossRef]
- Justin, S.H.F.W.; Armstrong, W. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 1987, 106, 465–495. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sou, H.-D.; Masumori, M.; Kurokochi, H.; Tange, T. Histological Observation of Primary and Secondary Aerenchyma Formation in Adventitious Roots of Syzygium kunstleri (King) Bahadur and R.C.Gaur Grown in Hypoxic Medium. Forests 2019, 10, 137. https://doi.org/10.3390/f10020137
Sou H-D, Masumori M, Kurokochi H, Tange T. Histological Observation of Primary and Secondary Aerenchyma Formation in Adventitious Roots of Syzygium kunstleri (King) Bahadur and R.C.Gaur Grown in Hypoxic Medium. Forests. 2019; 10(2):137. https://doi.org/10.3390/f10020137
Chicago/Turabian StyleSou, Hong-Duck, Masaya Masumori, Hiroyuki Kurokochi, and Takeshi Tange. 2019. "Histological Observation of Primary and Secondary Aerenchyma Formation in Adventitious Roots of Syzygium kunstleri (King) Bahadur and R.C.Gaur Grown in Hypoxic Medium" Forests 10, no. 2: 137. https://doi.org/10.3390/f10020137
APA StyleSou, H. -D., Masumori, M., Kurokochi, H., & Tange, T. (2019). Histological Observation of Primary and Secondary Aerenchyma Formation in Adventitious Roots of Syzygium kunstleri (King) Bahadur and R.C.Gaur Grown in Hypoxic Medium. Forests, 10(2), 137. https://doi.org/10.3390/f10020137