Effects of Hygrothermal Environment in Cooling Towers on the Chemical Composition of Bamboo Grid Packing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Composition Measurements
2.3. Elemental Composition and Mass Loss
2.4. FTIR Spectroscopy Analysis
2.5. Color Measurements
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition Analysis
3.2. Elemental Composition and Mass Loss
3.3. FTIR Analysis
3.4. Color Changes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seetharamu, K.N.; Swaroop, S. The effect of size on the performance of a fluidized bed cooling tower. Wärme-und Stoffübertragung 1991, 26, 17–21. [Google Scholar] [CrossRef]
- Chen, L.S.; Fei, B.H.; Ma, X.X.; Lu, J.P.; Fang, C.H. Investigation of Bamboo Grid Packing Properties Used in Cooling Tower. Forests 2018, 9, 762. [Google Scholar] [CrossRef]
- Lemouari, M.; Boumaza, M. Experimental investigation of the performance characteristics of a counterflow wet cooling tower. Int. J. Therm. Sci. 2010, 49, 2049–2056. [Google Scholar] [CrossRef]
- Goshayshi, H.R.; Missenden, J.F. The investigation of cooling tower packing in various arrangements. Appl. Therm. Eng. 2000, 20, 69–80. [Google Scholar] [CrossRef]
- Fang, C.H.; Jiang, Z.H.; Sun, Z.J.; Liu, H.R.; Zhang, X.B.; Zhang, R.; Fei, B.H. An overview on bamboo culm flattening. Constr. Build. Mater. 2018, 171, 65–74. [Google Scholar] [CrossRef]
- Chen, Y.L.; Shi, Y.F.; Xie, D.X. Performance Comparison between Bamboo Grid Packing and PVC Film Packing and its Applications. Power Stn. Aux. Equip. 2016, 37, 37–41. [Google Scholar]
- Slahor, J.J.; Hassler, C.C.; Degroot, R.C.; Gardner, D.J. Preservative Treatment Evaluation of Red Maple and Yellow-Poplar with ACQ-B. For. Prod. J. 1997, 47, 50–54. [Google Scholar]
- Deng, Q.P.; Li, D.G.; Zhang, J.P. FTIR Analysis on Changes of Chemical Structure and Compostions of Waterlogged Archaeological Wood. J. Northwest For. Univ. 2008, 23, 149–153. [Google Scholar]
- GB/T 2677.8-1994 Fibrous Raw Material-Determination of Acid-insoluble Lignin; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China: Beijing, China, 1994.
- GB/T 2677.10-1995 Fibrous Raw Material-Determination of Holocellulose; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China: Beijing, China, 1995.
- GB/T 744-2004 Pulps-Determination of Alkali Resistance; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China: Beijing, China, 2004.
- GB/T 2677.6-1994 Fibrous Raw Material-Determination of Solvent Extractives; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China: Beijing, China, 1994.
- Gelbrich, J.; Mai, C.; Militz, H. Evaluation of bacterial wood degradation by Fourier Transform Infrared (FTIR) measurements. J. Cult. Herit. 2012, 13, S135–S138. [Google Scholar] [CrossRef]
- Schimleck, L.R.; Espey, C.; Mora, C.R.; Evans, R.; Taylor, A.; Muniz, G. Characterization of the wood quality of pernambuco (Caesalpinia echinata Lam) by measurements of density, extractives content, microfibril angle, stiffness, color, and NIR spectroscopy. Holzforschung 2009, 63, 457–463. [Google Scholar] [CrossRef]
- Pandey, K.K. Study of the effect of photo-irradiation on the surface chemistry of wood. Polym. Degrad. Stab. 2005, 90, 9–20. [Google Scholar] [CrossRef]
- Xu, Y.M. Wood Science; China Forestry Publishing House: Beijing, China, 2006. [Google Scholar]
- Rowell, R.M. Handbook of Wood Chemistry & Wood Composites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ma, Q.Z. The Research on Utilization Approaches of High-Grade Resource Recovering of Bamboo Resources; Central South University of Forestry and Technology: Changsha, China, 2011. [Google Scholar]
- Windeisen, E.; Strobel, C.; Wegener, G. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 2007, 41, 523–536. [Google Scholar] [CrossRef]
- Meng, F.D.; Yu, Y.L.; Zhang, Y.M.; Yu, W.J.; Gao, J.M. Surface chemical composition analysis of heat-treated bamboo. Appl. Surf. Sci. 2016, 371, 383–390. [Google Scholar] [CrossRef]
- Mohareb, A.; Sirmah, P.; Pétrissans, M.; Gérardin, P. Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. Eur. J. Wood Wood Prod. 2012, 70, 519–524. [Google Scholar] [CrossRef]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Herrera, R.; Erdocia, X.; Llano-Ponte, R.; Labidi, J. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. J. Anal. Appl. Pyrolysis 2014, 107, 256–266. [Google Scholar] [CrossRef]
- Yang, S.M.; Jiang, Z.H.; Ren, H.Q.; Fei, B.H.; Yao, W.B. Study status and development tendency of bamboo lignin. Wood Process. Mach. 2008, 19, 23–33. [Google Scholar]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh-Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Levan, S.L.; Ross, R.J.; Winandy, J.E. Effects of Fire Retardant Chemicals on the Bending Properties of Wood at Elevated Temperatures; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1990.
- Winandy, J.E. Effects of Fire Retardant Treatments After 18 Months of Exposure at 150 °F (66 °C); Res. Note FPL-RN-0264; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1995.
- Inari, G.N.; Pétrissans, M.; Pétrissans, A.; Gérardin, P. Elemental composition of wood as a potential marker to evaluate heat treatment intensity. Polym. Degrad. Stab. 2009, 94, 365–368. [Google Scholar] [CrossRef]
- Candelier, K.; Dumarcay, S.; Petrissans, A.; Desharnais, L.; Gerardin, P. Comparison of chemical composition and decay durability of heat treated;wood cured under different inert atmospheres: Nitrogen or vacuum. Polym. Degrad. Stab. 2013, 98, 677–681. [Google Scholar] [CrossRef]
- Alén, R.; Kotilainen, R.; Zaman, A. Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Sci. Technol. 2002, 36, 163–171. [Google Scholar] [CrossRef]
- Inari, G.N.N.; Petrissans, M.; Lambert, J.; Ehrhardt, J.J.; Gérardin, P. XPS characterization of wood chemical composition after heat-treatment. Surf. Interface Anal. 2010, 38, 1336–1342. [Google Scholar] [CrossRef]
- Nguila, I.G.; Steeve, M.; Stéphane, D.; Mathieu, P.; Philippe, G. Evidence of char formation during wood heat treatment by mild pyrolysis. Polym. Degrad. Stab. 2007, 92, 997–1002. [Google Scholar]
- Fabbri, D.; Chiavari, G.; Prati, S.; Vassura, I.; Vangelista, M. Gas chromatography/mass spectrometric characterisation of pyrolysis/silylation products of glucose and cellulose. Rapid Commun. Mass Spectrom. 2010, 16, 2349–2355. [Google Scholar] [CrossRef]
- Elaieb, M.; Candelier, K.; Pétrissans, A.; Dumarçay, S.; Gérardin, P.; Pétrissans, M. Heat treatment of Tunisian soft wood species: Effect on the durability, chemical modifications and mechanical properties. Maderas Cienc. Tecnol. 2015, 17, 699–710. [Google Scholar] [CrossRef]
- Wang, X.; Ren, H. Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescens Mazel) and two wood species. Appl. Surf. Sci. 2008, 254, 7029–7034. [Google Scholar] [CrossRef]
- Wang, X.Q.; Ren, H.Q. Surface deterioration of moso bamboo (Phyllostachys pubescens) induced by exposure to artificial sunlight. J. Wood Sci. 2009, 55, 47–52. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Sun, B.; Liu, J.; Liu, S.; Yang, Q. Application of FT-NIR-DR and FT-IR-ATR spectroscopy to estimate the chemical composition of bamboo (Neosinocalamus affinis Keng). Holzforschung 2011, 65, 689–696. [Google Scholar] [CrossRef]
- Tomak, E.D.; Topaloglu, E.; Gumuskaya, E.; Yildiz, U.C.; Ay, N. An FT-IR study of the changes in chemical composition of bamboo degraded by brown-rot fungi. Int. Biodeterior. Biodegrad. 2013, 85, 131–138. [Google Scholar] [CrossRef]
- Carrasco, F.; Roy, C. Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Sci. Technol. 1992, 26, 189–208. [Google Scholar] [CrossRef]
- Shangguan, W.; Gong, Y.; Zhao, R.; Ren, H. Effects of heat treatment on the properties of bamboo scrimber. J. Wood Sci. 2016, 62, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Bekhta, P.; Proszyk, S.; Krystofia, T. Colour in short-term thermo-mechanically densified veneer of various wood species. Eur. J. Wood Wood Prod. 2014, 72, 785–797. [Google Scholar] [CrossRef]
- Zhang, S.J.; Zhang, S.C.; Zhang, S.H. Effect of hot treatment on wood color of different treespecies. For. Technol. 1996, 21, 44–46. [Google Scholar]
- Zhang, Y.M. Study on the Effect of Color and Physical-Mechanical Properties for Heat-Treated Bamboo; Chinese Academy of Forestry: Beijing, China, 2010.
Sample | Holocellulose (%) | α-Cellulose (%) | Hemicellulose (%) | Lignin (%) | Benzene-Ethanol Extractives (%) |
---|---|---|---|---|---|
Control | 64.08a (1.25) | 41.03a (1.94) | 23.05c (0.09) | 24.37a (2.23) | 5.77c (0.86) |
FJBGP | 66.27ab (2.01) | 45.43b (4.08) | 20.84b (2.75) | 27.68b (2.44) | 1.62b (1.33) |
SDBGP | 67.81b (2.35) | 48.35b (2.24) | 19.46a (2.65) | 26.63b (4.06) | 1.15a (1.23) |
Sample | Carbon (%) | Oxygen (%) | Hydrogen (%) | O/C a | Mass Loss b (%) |
---|---|---|---|---|---|
Control | 48.68 | 45.11 | 6.14 | 0.695 | - |
FJBGP | 48.95 | 44.95 | 6.06 | 0.689 | 7.94 |
SDBGP | 49.15 | 44.73 | 6.06 | 0.683 | 8.85 |
Samples | CIELAB | ||||
---|---|---|---|---|---|
L* | a* | b* | ΔE* | ||
Outer skin | Control | 66.27c (5.08) | 1.70a (3.23) | 14.34c (12.48) | — |
FJBGP | 40.95a (4.91) | 3.40b (9.12) | 11.69a (4.19) | 25.51 | |
SDBGP | 50.85b (5.68) | 4.44c (7.21) | 13.61b (3.38) | 15.68 | |
Inner skin | Control | 74.03c (2.34) | 5.16c (8.91) | 19.91c (4.82) | — |
FJBGP | 36.30a (3.5) | 2.87a (7.77) | 9.99a (8.51) | 39.08 | |
SDBGP | 41.95b (12.35) | 3.84b (6.14) | 13.32b (9.67) | 32.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-S.; Fei, B.-H.; Ma, X.-X.; Lu, J.-P.; Fang, C.-H. Effects of Hygrothermal Environment in Cooling Towers on the Chemical Composition of Bamboo Grid Packing. Forests 2019, 10, 274. https://doi.org/10.3390/f10030274
Chen L-S, Fei B-H, Ma X-X, Lu J-P, Fang C-H. Effects of Hygrothermal Environment in Cooling Towers on the Chemical Composition of Bamboo Grid Packing. Forests. 2019; 10(3):274. https://doi.org/10.3390/f10030274
Chicago/Turabian StyleChen, Li-Sheng, Ben-Hua Fei, Xin-Xin Ma, Ji-Ping Lu, and Chang-Hua Fang. 2019. "Effects of Hygrothermal Environment in Cooling Towers on the Chemical Composition of Bamboo Grid Packing" Forests 10, no. 3: 274. https://doi.org/10.3390/f10030274
APA StyleChen, L. -S., Fei, B. -H., Ma, X. -X., Lu, J. -P., & Fang, C. -H. (2019). Effects of Hygrothermal Environment in Cooling Towers on the Chemical Composition of Bamboo Grid Packing. Forests, 10(3), 274. https://doi.org/10.3390/f10030274