GIS-Based Multi-Criteria Assessment and Seasonal Impact on Plantation Forest Landscape Visual Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Visual Sensitivity Assessment Procedures
2.3. Determination of the Sensitivity Creteria
2.3.1. Amount and Attention of Users
2.3.2. Landscape Attractiveness
2.3.3. Viewing Condition
2.4. Determining the Weights of Criteria
2.5. Calculation and Mapping of Sub-Criteria
2.6. Comprehensive Assessment and Model Validation
3. Results
3.1. Reliability
3.2. Weight Values of Criteria
3.3. Vegetation Uniformity and Color Diversity
3.4. Assessment Results of Main Criteria
3.5. Comprehensive Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keenan, R.; Reams, G.; Achard, F.; de Freitas, J.; Grainger, A.; Lindquist, E. Dynamics of Global Forest Area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Lu, Y. Supporting Precision Improvement Project of Forest Quality with Multifunctional Management Technology. Land Green. 2017, 4, 22–25. [Google Scholar]
- Eggers, J.; Lindhagen, A.; Lind, T.; Lämås, T.; Öhman, K. Balancing Landscape-level Forest Management between Recreation and Wood Production. Urban For. Urban Green. 2018, 33, 1–11. [Google Scholar] [CrossRef]
- Recreation Branch, BC Ministry of Forests (BCMoF) (Ed.) Visual Landscape Design Training Manual; Recreation Branch Publication: Victoria, BC, Canada, 1994; p. 5. ISBN 0-7726-2437-2.
- Abildtrup, J.; Garcia, S.; Olsen, S.B.; Stenger, A. Spatial Preference Heterogeneity in Forest Recreation. Ecol. Econ. 2013, 92, 67–77. [Google Scholar] [CrossRef]
- Agimass, F.; Lundhede, T.; Panduro, T.E.; Jacobsen, J.B. The Choice of Forest Site for Recreation: A Revealed Preference Analysis Using Spatial Data. Ecosyst. Serv. 2018, 31, 445–454. [Google Scholar] [CrossRef]
- Arnberger, A.; Schneider, I.E.; Ebenberger, M.; Eder, R.; Venette, R.C.; Snyder, S.A.; Gobster, P.H.; Choi, A.; Cottrell, S. Emerald Ash Borer Impacts on Visual Preferences for Urban Forest Recreation Settings. Urban For. Urban Green. 2017, 27, 235–245. [Google Scholar] [CrossRef]
- Eriksson, L.; Nordlund, A.; Olsson, O.; Westin, K. Recreation in Different Forest Settings: A Scene Preference Study. Forests 2012, 4, 923–943. [Google Scholar] [CrossRef]
- Litton, R.B. Visual Vulnerability of Forest Landscapes. J. For. 1974, 7, 392–397. [Google Scholar]
- Forest Practices Branch, BC Ministry of Forests (BCMoF) (Ed.) Visual Landscape Inventory:Procedures and Standards Manual; Forest Practices Branch, BC Ministry of Forests (BCMoF): Victoria, BC, Canada, 1997.
- Ode, Å.; Fry, G.; Tveit, M.S.; Messager, P.; Miller, D. Indicators of Perceived Naturalness as Drivers of Landscape Preference. J. Environ. Manag. 2009, 90, 375–383. [Google Scholar] [CrossRef]
- Gundersen, V.S.; Frivold, L.H. Public Preferences for Forest Structures: A Review of Quantitative Surveys from Finland, Norway and Sweden. Urban For. Urban Green. 2008, 7, 241–258. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Jensen, R.B. Some Visual Aspects of Planting Design and Silviculture across Contemporary Forest Management Paradigms—Perspectives for Urban Afforestation. Urban For. Urban Green. 2007, 6, 143–158. [Google Scholar] [CrossRef]
- Forest Service (Ed.) Landscape Aesthetics: A Handbook of Scenery Management; U.S. Government Printing Office: Washington, DC, USA, 1995.
- Dronova, I. Environmental Heterogeneity as a Bridge between Ecosystem Service and Visual Quality Objectives in Management, Planning and Design. Landsc. Urban Plan. 2017, 163, 90–106. [Google Scholar] [CrossRef]
- Dramstad, W.E.; Tveit, M.S.; Fjellstad, W.J.; Fry, G.L. Relationships between Visual Landscape Preferences and Map-based Indicators of Landscape Structure. Landsc. Urban Plan. 2006, 78, 465–474. [Google Scholar] [CrossRef]
- Bishop, I.D.; Hulse, D.W. Prediction of Scenic Beauty Using Mapped Data and Geographic Information Systems. Landsc. Urban Plan. 1994, 30, 59–70. [Google Scholar] [CrossRef]
- Nutsford, D.; Reitsma, F.; Pearson, A.L.; Kingham, S. Personalising the Viewshed: Visibility Analysis from the Human Perspective. Appl. Geogr. 2015, 62, 1–7. [Google Scholar] [CrossRef]
- Chandio, I.A.; Matori, A.N.B.; WanYusof, K.B.; Talpur, M.A.H.; Balogun, A.-L.; Lawal, D.U. GIS-based Analytic Hierarchy Process as a Multicriteria Decision Analysis Instrument: A Review. Arab. J. Geosci. 2013, 6, 3059–3066. [Google Scholar] [CrossRef]
- Ananda, J.; Herath, G. A Critical Review of Multi-criteria Decision Making Methods with Special Reference to Forest Management and Planning. Ecol. Econ. 2009, 68, 2535–2548. [Google Scholar] [CrossRef]
- Mosadeghi, R.; Warnken, J.; Tomlinson, R.; Mirfenderesk, H. Comparison of Fuzzy-AHP and AHP in a Spatial Multi-criteria Decision Making Model for Urban Land-use Planning. Comput. Environ. Urban Syst. 2015, 49, 54–65. [Google Scholar] [CrossRef]
- Store, R.; Karjalainen, E.; Haara, A.; Leskinen, P.; Nivala, V. Producing a Sensitivity Assessment Method for Visual Forest Landscapes. Landsc. Urban Plan. 2015, 144, 128–141. [Google Scholar] [CrossRef]
- Haara, A.; Store, R.; Leskinen, P. Analyzing Uncertainties and Estimating Priorities of Landscape Sensitivity Based on Expert Opinions. Landsc. Urban Plan. 2017, 163, 56–66. [Google Scholar] [CrossRef]
- Tveit, M.S.; Ode, Å.; Fry, G. Key Concepts in a Framework for Analysing Visual Landscape Character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Gerstenberg, T.; Hofman, M. Perception and Preference of Trees: A Psychological Contribution to Tree Species Selection in Urban Areas. Urban For. Urban Green. 2016, 15, 103–111. [Google Scholar] [CrossRef]
- Jorgensen, A.; Hitchmough, J.; Calvert, T. Woodland Spaces and Edges: Their Impact on Perception of Safety and Preference. Landsc. Urban Plan. 2002, 66, 135–150. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, W.; Li, R. Visual Preference of Trees: The Effects of Tree Attributes and Seasons. Urban For. Urban Green. 2017, 25, 19–25. [Google Scholar] [CrossRef]
- Junge, X.; Schüpbach, B.; Walter, T.; Schmid, B.; Lindemann-Matthies, P. Aesthetic Quality of Agricultural Landscape Elements in Different Seasonal Stages in Switzerland. Landsc. Urban Plan. 2015, 133, 67–77. [Google Scholar] [CrossRef]
- Schupbach, B.; Junge, X.; Lindemann-Matthies, P.; Walter, T. Seasonality, Diversity and Aesthetic Valuation of Landscape Plots: An Integrative Approach to Assess Landscape Quality on Different Scales. Land Use Policy 2016, 53, 27–35. [Google Scholar] [CrossRef]
- Martín, B.; Ortega, E.; Otero, I.; Arce, R.M. Landscape Character Assessment with GIS Using Map-based Indicators and Photographs in the Relationship between Landscape and Roads. J. Environ. Manag. 2016, 180, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Fry, G.; Tveit, M.S.; Ode, Å.; Velarde, M.D. The Eology of Visual Landscape: Exploring the Conceptual Common Ground of Visual and Ecological Landscape Indicators. Ecol. Indic. 2009, 9, 933–947. [Google Scholar] [CrossRef]
- Palme, J.F. Using Spatial Metrics to Predict Scenic Perception in a Changing Landscape: Dennis, Massachusetts. Landsc. Urban Plan. 2004, 69, 201–208. [Google Scholar] [CrossRef]
- Sahraoui, Y.; Clauzel, C.; Foltete, J.-C. Spatial Modelling of Landscape Aesthetic Potential in Urban-rural Fringes. J. Environ. Manag. 2016, 181, 623–636. [Google Scholar] [CrossRef]
- Polat, A.T.; Akay, A. Relationships between the Visual Preferences of Urban Recreation Area Users and Various Landscape Design Elements. Urban For. Urban Green. 2015, 14, 573–582. [Google Scholar] [CrossRef]
- Acar, C.; Sakıcı, Ç. Assessing Landscape Perception of Urban Rocky Habitats. Build. Environ. 2008, 6, 1153–1170. [Google Scholar] [CrossRef]
- Saura, S.; Torras, O.; Gil-Tena, A.; Pascual-Hortal, L. Shape Irregularity as an Indicator of Forest Biodiversity and Guidelines for Metric Selection. In Patterns and Processes in Forest Landscapes; Lafortezza, R., Sanesi, G., Chen, J., Crow, T.R., Eds.; Springer: Dordrecht, Holland, 2008; pp. 167–189. ISBN 978-1-4020-8503-1. [Google Scholar]
- Ode, Å.; Tveit, M.S.; Fry, G. Advantages of Using Different Data Sources in Assessment of Landscape Change and Its Effect on Visual Scale. Ecol. Indic. 2010, 10, 24–31. [Google Scholar] [CrossRef]
- Appleton, J. The Experience of Landscape; Wiley: London, UK, 1975; pp. 95–96. ISBN 9780471962359. [Google Scholar]
- Swetnam, R.D.; Harrison-Curran, S.K.; Smitha, G.R. Quantifying Visual Landscape Quality in Rural Wales: A GIS-enabled Method for Extensive Monitoring of a Valued Cultural Ecosystem Service. Ecosyst. Serv. 2017, 26, 451–464. [Google Scholar] [CrossRef]
- García-Llorente, M.; Martín-López, B.; Iniesta-Arandia, I.; López-Santiago, C.A.; Aguilera, P.A.; Montes, C. The Role of Multi-functionality in Social Preferences toward Semi-arid Rural Landscapes: An Ecosystem Service Approach. Environ. Sci. Policy 2012, 19, 136–146. [Google Scholar] [CrossRef]
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Ruiz-Aviles, P. Assessing the Visual Quality of Rural Landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Tappeiner, U. Predicting Scenic Beauty of Mountain Regions. Landsc. Urban Plan. 2013, 111, 1–12. [Google Scholar] [CrossRef]
- Herbst, H.; Förster, M.; Kleinschmit, B. Contribution of Landscape Metrics to the Assessment of Scenic Quality—The Example of the Landscape Structure Plan Havelland/Germany. Landsc. Online 2009, 10, 1–17. [Google Scholar] [CrossRef]
- Hammitt, W.E.; Patterson, M.E.; Noe, F.P. Identifying and Predicting Visual Preference of Southern Appalachian Forest Recreation Vistas. Landsc. Urban Plan. 1994, 29, 171–183. [Google Scholar] [CrossRef]
- Sklenicka, P.; Zouhar, J. Predicting the Visual Impact of Onshore Wind Farms via Landscape Indices: A Method for Objectivizing Planning and Decision Processes. Appl. Energy 2018, 209, 445–454. [Google Scholar] [CrossRef]
- Chamberlain, B.C.; Meitner, M.J. A Route-based Visibility Analysis for Landscape Management. Landsc. Urban Plan. 2013, 111, 13–24. [Google Scholar] [CrossRef]
- De Vries, S.; de Groot, M.; Boers, J. Eyesores in Sight: Quantifying the Impact of Man-made Elements on the Scenic Beauty of Dutch Landscapes. Landsc. Urban Plan. 2012, 105, 118–127. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 3, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Relative Measurement and Its Generalization in Decision Making Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors the Analytic Hierarchy/Network Process. Rev. R. Acad. Cien. Serie. A. Mat. 2008, 102, 251–318. [Google Scholar] [CrossRef]
- Pradhan, A.M.S.; Kim, Y.T. Evaluation of a Combined Spatial Multi-criteria Evaluation Model and Deterministic Model for Landslide Susceptibility Mapping. Catena 2016, 140, 125–139. [Google Scholar] [CrossRef]
- Caha, J.; Drážná, A. R Package for Calculation of (Fuzzy) AHP, Version 0.9.1. Available online: http://github.com/JanCaha/FuzzyAHP/ (accessed on 10 August 2018).
- R i386 3.5.1. Available online: https://www.r-project.org/ (accessed on 8 August 2018).
- De Val, G.D.; Atauri, J.A.; de Lucio, J.V. Relationship between Landscape Visual Attributes and Spatial Pattern Indices: A Test Study in Mediterranean-climate Landscapes. Landsc. Urban Plan. 2006, 77, 393–407. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B. Index of Landscape Disharmony (ILDH) as a New Tool Combining the Aesthetic and Ecological Approach to Landscape Assessment Barbara. Ecol. Indic. 2016, 70, 166–180. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 6 July 2018).
- Tasser, E.; Ruffini, F.V.; Tappeiner, U. An Integrative Approach for Analysing Landscape Dynamics in Diverse Cultivated and Natural Mountain Areas. Landsc. Ecol. 2009, 5, 611–628. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban Flooding Risk Assessment Based on an Integrated k-means Cluster Algorithm and Improved Entropy Weight Method in the Region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Marchi, L.; Cavalli, M.; Trevisani, S. Hypsometric Analysis of Headwater Rock Basins in the Dolomites (Eastern Alps) Using High-Resolution Topography. Geogr. Ann. 2015, 97, 317–335. [Google Scholar] [CrossRef]
- Han, H.; Gao, T.; Yi, H.; Yang, M.; Yan, X.; Ren, G.; Yang, J. Extraction of Relief Amplitude Based on Change Point Method: A Case Study on the Tibetan Plateau. Sci. Geogr. Sin. 2012, 32, 101–104. [Google Scholar]
- Berti, M.; Corsini, A.; Daehne, A. Comparative Analysis of Surface Roughness Algorithms for the Identification of Active Landslides. Geomorphology 2013, 182, 1–18. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Jenness, J. Land Facet Corridor Designer for ArcGIS 10, Revision 1.2.884. Available online: http://www.jennessent.com/arcgis/arcgis_extensions.htm (accessed on 5 May 2018).
- Roberts, D.W.; Cooper, S.V. Concepts and Techniques of Vegetation Mapping. In Land Classifications Based on Vegetation: Applications for Resource Management; General Technical Report INT_257; USDA, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1989; pp. 90–96. [Google Scholar]
- 5.9.2. Cumulative Viewshed Analysis and Exposure Index. 2015. Available online: http://mapaspects.org/book/export/html/2134 (accessed on 8 June 2018).
- Scarfò, F.; Mercurio, R.; Del Peso, C. Assessing Visual Impacts of Forest Operations on a Landscape in the Serre Regional Park of Southern Italy. Landsc. Ecol. Eng. 2013, 9, 1–10. [Google Scholar] [CrossRef]
- Selim, S.; Koc-San, D.; Selim, C.; San, B.T. Site Selection for Avocado Cultivation Using GIS and Multi-criteria Decision Analyses: Case Study of Antalya, Turkey. Comput. Electron. Agric. 2018, 154, 450–459. [Google Scholar] [CrossRef]
- Su, W.H. Research on Theory and Method of Multi-Index Comprehensive Evaluation. Ph.D. Thesis, Xiamen University, Xiamen, China, 2000. [Google Scholar]
- Frank, S.; Fürst, C.; Koschkea, L.; Witta, A.; Makeschin, F. Assessment of Landscape Aesthetics—Validation of a Landscape Metrics-based Assessment by Visual Estimation of the Scenic Beauty. Ecol. Indic. 2013, 32, 222–231. [Google Scholar] [CrossRef]
- Tang, X. RS-GIS Based Fuzzy Evaluation of Landscape Visual Sensitivity of Three Gorges of Yangtze River. J. Tongji Univ. (Nat. Sci.) 2008, 36, 1679–1685. [Google Scholar]
- Deng, J.; Andrada, R.; Pierskalla, C. Visitors’ and Residents’ Perceptions of Urban Forests for Leisure in Washington D.C. Urban For. Urban Green. 2017, 28, 1–11. [Google Scholar] [CrossRef]
Residential Areas | Roads | ||||
---|---|---|---|---|---|
Accommodation Area for Visitors | Forester Living Areas | Villages | Main Roads | Minor Roads | |
Value | 1 1 | 0.18 1 | 0.36 1 | 1 | 0.38 |
Parameter | Indices | Entropy Weight | Information Entropy | |
---|---|---|---|---|
VU (vegetation uniformity) | a | AREA | 0.58 | 0.66 |
b | PROX 1 | 0.42 | 0.75 | |
CD (color diversity) | c | FRAC | 0.02 | 1.00 |
d | PROX 1 | 0.98 | 0.77 |
Season | Types of Viewpoints | Number of Viewpoints | Offset (m) | Maximum Distance (km) |
---|---|---|---|---|
Summer | Horizontally-oriented | 1980 | 1.60 | 2 [17] |
Overlooking | 2 | 30–40 | 10 [30] | |
Autumn | Horizontally-oriented | 2396 | 1.60 | 2 |
Overlooking | 3 | 30–40 | 10 |
Criteria | Local Weights | Global Weights |
---|---|---|
Main criteria CR (consistency ratio) = 0.03 | ||
Amount and attention of users | 0.25 | |
Landscape attractiveness | 0.51 | |
Viewing condition | 0.24 | |
Sub-criteria of amount and attention of users CR = 0.03 | ||
Residential Area | 0.18 | 0.04 |
Recreation Area | 0.43 | 0.11 |
Road level | 0.39 | 0.10 |
Sub-criteria of landscape attractiveness CR = 0.05 | ||
VC (vegetation uniformity) or CD (color diversity) | 0.46 | 0.23 |
Terrain diversity | 0.29 | 0.15 |
Edge presence | 0.13 | 0.07 |
Location significance | 0.12 | 0.06 |
Sub-criteria of viewing condition CR = 0.00 | ||
Visibility | 0.43 | 0.10 |
Distance | 0.57 | 0.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Li, Y.; Zhang, Z.; Xu, Z.; Huang, X. GIS-Based Multi-Criteria Assessment and Seasonal Impact on Plantation Forest Landscape Visual Sensitivity. Forests 2019, 10, 297. https://doi.org/10.3390/f10040297
Yang H, Li Y, Zhang Z, Xu Z, Huang X. GIS-Based Multi-Criteria Assessment and Seasonal Impact on Plantation Forest Landscape Visual Sensitivity. Forests. 2019; 10(4):297. https://doi.org/10.3390/f10040297
Chicago/Turabian StyleYang, Huijuan, Yongning Li, Zhidong Zhang, Zhongqi Xu, and Xuanrui Huang. 2019. "GIS-Based Multi-Criteria Assessment and Seasonal Impact on Plantation Forest Landscape Visual Sensitivity" Forests 10, no. 4: 297. https://doi.org/10.3390/f10040297
APA StyleYang, H., Li, Y., Zhang, Z., Xu, Z., & Huang, X. (2019). GIS-Based Multi-Criteria Assessment and Seasonal Impact on Plantation Forest Landscape Visual Sensitivity. Forests, 10(4), 297. https://doi.org/10.3390/f10040297