Analysis of Error Structure for Additive Biomass Equations on the Use of Multivariate Likelihood Function
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Collection
2.2. Model Specification and Estimation
2.3. Multivariate Likelihood Function to Analyze Error Structure
2.4. Back-Transformed Correction Factor for Additive Equations
2.5. Model Assessment
3. Result
3.1. Error Structure for Each Component Equation and Additive System
3.2. Assessment of Anti-Log Correction Factor for Additive System
3.3. Comparison of Model Fitting and Error Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Multivariate Normal Distribution
Appendix A.2. Multivariate Log-Normal Distribution and Correction Factor
Appendix A.3. Multivariate Conditional Distribution
Appendix A.4. Toward Akaike Weights and Evidence Ratios
References
- Bolte, A.; Rahmann, T.; Kuhr, M.; Pogoda, P.; Murach, D.; Gadow, K.V. Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil 2004, 264, 1–11. [Google Scholar] [CrossRef]
- West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the origin of allometric scaling laws in biology. Science 1997, 276, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Huxley, J.S. Problems of Relative Growth; Dial Press: New York, NY, USA, 1931; pp. 1–31. [Google Scholar]
- Kittredge, J. Estimation of the amount of foliage of trees and stands. J. For. 1944, 42, 905–912. [Google Scholar]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35. [Google Scholar]
- Ter-Mikaelian, M.T.; Korzukhin, M.D. Biomass equations for sixty-five north American tree species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef]
- Zianis, D.; Xanthopoulos, G.; Kalabokidis, K.; Kazakis, G.; Ghosn, D.; Roussou, O. Allometric equations for aboveground biomass estimation by size class for pinus brutia ten. trees growing in north and south Aegean islands, Greece. Eur. J. For. Res. 2011, 130, 145–160. [Google Scholar] [CrossRef]
- Baskerville, G.L. Use of Logarithmic Regression in the Estimation of Plant Biomass. Can. J. For. Res. 1972, 2, 49–53. [Google Scholar] [CrossRef]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Smith, R.J. Allometric scaling in comparative biology: Problems of concept and method. Am. J. Physiol. 1984, 246, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.J. Logarithmic transformation bias in allometry. Am. J. Phys. Anthropol. 1993, 90, 215–228. [Google Scholar] [CrossRef]
- Beauchamp, J.J.; Olson, J.S. Corrections for bias in regression estimates after logarithmic transformation. Ecology 1973, 54, 1403–1407. [Google Scholar] [CrossRef]
- Gingerich, P.D. Arithmetic or geometric normality of biological variation: An empirical test of theory. J. Theor. Biol. 2000, 204, 201–221. [Google Scholar] [CrossRef] [PubMed]
- Zar, J.H. Calculation and miscalculation of the allometric equation as a model in biological data. Bioscience 1968, 18, 1118–1120. [Google Scholar] [CrossRef]
- Snowdon, P. A ratio estimator for bias correction in logarithmic regressions. Can. J. For. Res. 1991, 21, 720–724. [Google Scholar] [CrossRef]
- Madgwick, H.A.I.; Satoo, T. On estimating the aboveground weights of tree stands. Ecology 1975, 56, 1446–1450. [Google Scholar] [CrossRef]
- Zianis, D.; Mencuccini, M. Aboveground biomass relationships for beech (fagus moesiaca cz.) trees in vermio mountain, northern Greece, and generalized equations for fagus sp. Ann. For. Sci. 2003, 60, 439–448. [Google Scholar] [CrossRef]
- Glass, N.R. Discussion of calculation of power function with special reference to respiratory metabolism in fish. J. Fish. Res. Board Can. 1969, 26, 2643–2650. [Google Scholar] [CrossRef]
- Packard, G.C.; Boardman, T.J. Model selection and logarithmic transformation in allometric analysis. Physiol. Biochem. Zool. 2008, 81, 496–507. [Google Scholar] [CrossRef]
- Jansson, M. A comparison of detransformed logarithmic regressions and power function regressions. Geogr. Ann. Ser. A Phys. Geogr. 1985, 67, 61–70. [Google Scholar] [CrossRef]
- Packard, G.C. On the use of logarithmic transformations in allometric analyses. J. Theor. Biol. 2009, 257, 515–518. [Google Scholar] [CrossRef]
- Packard, G.C.; Birchard, G.F.; Boardman, T.J. Fitting statistical models in bivariate allometry. Biol. Rev. 2011, 86, 549–563. [Google Scholar] [CrossRef]
- Packard, G.C. Multiplicative by nature: logarithmic transformation in allometry. J. Exp. Zool. 2014, 322, 202–207. [Google Scholar] [CrossRef]
- Kerkhoff, A.J.; Enquist, B.J. Multiplicative by nature: Why logarithmic transformation is necessary in allometry. J. Theor. Biol. 2009, 257, 519–521. [Google Scholar] [CrossRef]
- Li, H.; Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For. Ecol. Manag. 2013, 289, 153–163. [Google Scholar] [CrossRef]
- Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [Google Scholar] [CrossRef]
- Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Finney, D.J. Was this in your statistics textbook? v. transformation of data. Exp. Agric. 1989, 25, 165–175. [Google Scholar] [CrossRef]
- Asselman, N.E.M. Fitting and interpretation of sediment rating curves. J. Hydrol. 2000, 234, 228–248. [Google Scholar] [CrossRef]
- Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 2011, 92, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, F.T. Evaluating model fit to determine if logarithmic transformations are necessary in allometry: A comment on the exchange between packard (2009) and kerkhoff and enquist (2009). J. Theor. Biol. 2013, 317, 418–421. [Google Scholar] [CrossRef]
- Lai, J.; Yang, B.; Lin, D.; Kerkhoff, A.J.; Ma, K. The allometry of coarse root biomass: Log-transformed linear regression or nonlinear regression? PLoS ONE 2013, 8, e77007. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, L. Error structure and variance function of allometric model. Sci. Silva Sin. 2018, 54, 90–97. [Google Scholar]
- Dong, L.; Zhang, L.; Li, F. A compatible system of biomass equations for three conifer species in northeast, china. For. Ecol. Manag. 2014, 329, 306–317. [Google Scholar] [CrossRef]
- Cunia, T.; Briggs, R.D. Forcing additivity of biomass tables: Some empirical results. Can. J. For. Res. 1984, 14, 376–384. [Google Scholar] [CrossRef]
- Kozak, A. Methods for ensuring additivity of biomass components by regression analysis. For. Chron. 1970, 46, 402–405. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Bi, H.; Turner, J.; Lambert, M.J. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 2004, 18, 467–479. [Google Scholar] [CrossRef]
- Zou, W.; Zeng, W.; Zhang, L.; Zeng, M. Modeling crown biomass for four pine species in China. Forests 2015, 6, 433–449. [Google Scholar] [CrossRef]
- State Forestry Administration of PR China. Technical Regulation on Sample Collections for Tree Biomass Modeling. In LY/T 2259-2014; Chinese Standard Press: Beijing, China, 2014. [Google Scholar]
- Zeng, W. Comparison of different weight function in weighted regression. For. Res. Manag. 2013, 5, 55–61. [Google Scholar]
- Zeng, W. Research on weighting regression and modeling. Sci. Silva Sin. 1999, 35, 5–11. [Google Scholar]
- Richard, A.J.; Dean, W.W. Applied Multivariate Statistical Analysis, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2007; pp. 149–173. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 70–79. [Google Scholar]
- Kozak, A.; Kozak, R. Does cross validation provide additional information in the evaluation of regression models. Can. J. For. Res. 2003, 33, 976–987. [Google Scholar] [CrossRef]
- Packard, G.C. Is logarithmic transformation necessary in allometry? Biol. J. Linn. Soc. 2013, 109, 476–486. [Google Scholar] [CrossRef] [Green Version]
Variable | Cinnamomum camphora (L.) Presl | Schima superba Gardn. et Champ. | Liquidambar formosana Hance. | ||||||
---|---|---|---|---|---|---|---|---|---|
Range | Mean | SD | Range | Mean | SD | Range | Mean | SD | |
Diameter/cm | 1.9–41.0 | 14.5 | 10.5 | 1.7–51.5 | 14.4 | 10.9 | 1.8–43.5 | 14.4 | 10.6 |
Branch/kg | 0.1–547.0 | 44.8 | 105.1 | 0.1–371.0 | 36.3 | 65.9 | 0.1–468.7 | 30.0 | 62.4 |
Foliage/kg | 0.1–89.8 | 5.8 | 12.5 | 0.1–45.7 | 5.7 | 8.7 | 0.1–46.4 | 4.6 | 9.6 |
Stem wood/kg | 0.2–519.7 | 62.1 | 100.1 | 0.3–570.7 | 69.2 | 110.5 | 0.2–569.9 | 81.5 | 127.8 |
Stem bark/kg | 0.1–75.5 | 10.5 | 16.1 | 0.1–89.0 | 12.6 | 19.5 | 0.1–121.6 | 13.1 | 20.5 |
Aboveground/kg | 0.4–1016.9 | 123.1 | 221.7 | 0.6–897.4 | 123.8 | 192.2 | 0.3–955.5 | 129.2 | 206.1 |
Species | Component | ER | LR | NLR | |||||
---|---|---|---|---|---|---|---|---|---|
a | b | a | b | ||||||
Cinnamomum camphora | Branch | 38.3 | <<10−2 | 0.01231 (0.00218) | 2.74507 (0.06317) | 357.8 | 0.01213 (0.00197) | 2.75077 (0.05655) | 396.1 |
Foliage | 263.2 | <<10−2 | 0.01429 (0.00356) | 2.04953 (0.09561) | 228.3 | 0.01360 (0.00246) | 2.09921 (0.07636) | 491.5 | |
Stem wood | −55.5 | >>102 | 0.07100 (0.00741) | 2.26782 (0.03982) | 350.8 | 0.08086 (0.02089) | 2.26358 (0.07766) | 295.3 | |
Stem bark | −15.9 | >>102 | 0.02016 (0.00307) | 2.0898 (0.05842) | 216.5 | 0.03274 (0.01061) | 1.99888 (0.09682) | 200.6 | |
Aboveground | −105.6 | >>102 | — | — | 396.1 | — | — | 290.5 | |
Schima superba | Branch | −495.5 | >>102 | 0.03682 (0.00596) | 2.37522 (0.06300) | 340.0 | 0.05756 (0.01954) | 2.18189 (0.10335) | −155.5 |
Foliage | −263.2 | >>102 | 0.07793 (0.01242) | 1.44971 (0.07602) | 276.3 | 0.04990 (0.01759) | 1.66296 (0.11131) | 13.1 | |
Stem wood | −530.9 | >>102 | 0.08755 (0.00892) | 2.24571 (0.04176) | 317.8 | 0.14024 (0.02612) | 2.13536 (0.05512) | −213.1 | |
Stem bark | −311.7 | >>102 | 0.02301 (0.00295) | 2.13066 (0.05245) | 253.0 | 0.04092 (0.01291) | 1.9895 (0.09415) | −58.7 | |
Aboveground | −617.1 | >>102 | — | — | 364.8 | — | — | −252.3 | |
Liquidambar formosana | Branch | −595.5 | >>102 | 0.01603 (0.00312) | 2.51909 (0.07487) | 357.3 | 0.01702 (0.00551) | 2.51466 (0.10100) | −238.2 |
Foliage | −221.5 | >>102 | 0.00385 (0.00117) | 2.26453 (0.12098) | 167.8 | 0.00475 (0.00219) | 2.33859 (0.13845) | −53.7 | |
Stem wood | −670.7 | >>102 | 0.08077 (0.00991) | 2.33577 (0.04822) | 347.8 | 0.09299 (0.01878) | 2.30736 (0.06021) | −322.9 | |
Stem bark | −401.6 | >>102 | 0.02048 (0.00310) | 2.19051 (0.05960) | 238.5 | 0.02329 (0.00480) | 2.17340 (0.06284) | −163.1 | |
Aboveground | −731.2 | >>102 | — | — | 379.6 | — | — | −351.6 |
Species | ER | LR | NLR | |||
---|---|---|---|---|---|---|
Cinnamomum camphora | −7.0 | 33 | −961.8 | 1941.3 | −958.3 | 1934.3 |
Schima superba | −810.2 | >>102 | −1018.0 | 2053.8 | −612.9 | 1243.6 |
Liquidambar formosana | −846.7 | >>102 | −952.4 | 1922.6 | −529.1 | 1075.9 |
Species | Model | Basic CF | Additive Model CF | CF Value | R2 | SEE | TRE | ASE | RMA | MPE |
---|---|---|---|---|---|---|---|---|---|---|
Cinnamomum camphora | NLR | - | - | - | 0.897 | 73.14 | 1.36 | −5.52 | 17.92 | 10.22 |
LR | CF0 | - | 1.00000 | 0.880 | 78.91 | 9.62 | 4.38 | 19.35 | 11.02 | |
CF1 | 1.13975 | 0.905 | 70.25 | −3.82 | −8.42 | 18.17 | 9.81 | |||
1.07544 | 0.898 | 72.84 | 1.93 | −2.94 | 17.83 | 10.18 | ||||
CF2 | 1.11111 | 0.903 | 71.08 | −1.35 | −6.06 | 17.82 | 9.93 | |||
1.09824 | 0.901 | 71.63 | −0.19 | −4.96 | 17.76 | 10.01 | ||||
Schima superba | NLR | - | - | - | 0.903 | 60.32 | 0.92 | −6.65 | 21.71 | 8.54 |
LR | CF0 | - | 1.00000 | 0.890 | 64.15 | 2.61 | 5.72 | 21.61 | 9.08 | |
CF1 | 1.12639 | 0.849 | 75.06 | −8.90 | −6.15 | 19.86 | 10.63 | |||
1.06502 | 0.875 | 68.42 | −3.65 | −0.74 | 20.05 | 9.69 | ||||
CF2 | 1.08285 | 0.868 | 70.11 | −5.24 | −2.37 | 19.88 | 9.93 | |||
1.03248 | 0.884 | 65.88 | −0.62 | 2.39 | 20.68 | 9.33 | ||||
Liquidambar formosana | NLR | - | - | - | 0.933 | 53.85 | 0.23 | −2.77 | 19.79 | 7.31 |
LR | CF0 | - | 1.00000 | 0.929 | 55.42 | 6.54 | 5.30 | 21.05 | 7.52 | |
CF1 | 1.17647 | 0.915 | 60.36 | −9.44 | −10.5 | 20.32 | 8.19 | |||
1.08010 | 0.932 | 54.18 | −1.36 | −2.51 | 19.67 | 7.36 | ||||
CF2 | 1.16312 | 0.919 | 59.06 | −8.40 | −9.47 | 20.12 | 8.02 | |||
1.06842 | 0.932 | 53.99 | −0.28 | −1.45 | 19.71 | 7.33 |
Tree Species | Component | Model | R2 | SEE | TRE | ASE | RMA | MPE |
---|---|---|---|---|---|---|---|---|
Cinnamomum camphora | Branch | NLR | 0.782 | 51.65 | 1.63 | −2.39 | 41.70 | 19.18 |
LR0 | 0.780 | 51.87 | 2.09 | −2.56 | 41.58 | 19.26 | ||
LRw2 | 0.799 | 49.59 | −7.05 | −11.27 | 40.65 | 18.42 | ||
Foliage | NLR | 0.580 | 8.17 | −3.93 | −5.78 | 46.85 | 24.91 | |
LR0 | 0.554 | 8.42 | 7.43 | 0.81 | 47.73 | 25.68 | ||
LRw2 | 0.572 | 8.25 | −2.18 | −8.21 | 46.31 | 25.16 | ||
Stem wood | NLR | 0.875 | 35.62 | 1.74 | −3.10 | 22.47 | 10.07 | |
LR0 | 0.854 | 38.49 | 14.26 | 9.22 | 24.65 | 10.88 | ||
LRw2 | 0.873 | 35.88 | 4.04 | −0.55 | 22.57 | 10.14 | ||
Stem bark | NLR | 0.848 | 6.31 | 1.01 | −10.54 | 30.03 | 10.52 | |
LR0 | 0.806 | 7.12 | 22.16 | 16.03 | 35.55 | 11.88 | ||
LRw2 | 0.836 | 6.54 | 11.23 | 5.65 | 30.32 | 10.91 | ||
Schima superba | Branch | NLR | 0.636 | 39.95 | 7.21 | −5.25 | 36.42 | 19.31 |
LR0 | 0.533 | 45.25 | −12.14 | −6.66 | 34.24 | 21.87 | ||
LRw2 | 0.508 | 46.44 | −14.9 | −9.60 | 33.93 | 22.45 | ||
Foliage | NLR | 0.655 | 5.16 | 5.16 | 0.50 | 51.07 | 15.84 | |
LR0 | 0.560 | 5.82 | 31.52 | 8.77 | 56.98 | 17.86 | ||
LRw2 | 0.574 | 5.73 | 27.38 | 5.35 | 55.95 | 17.59 | ||
Stem wood | NLR | 0.908 | 33.73 | −2.07 | −7.79 | 25.34 | 8.55 | |
LR0 | 0.905 | 34.27 | 8.76 | 13.03 | 27.09 | 8.68 | ||
LRw2 | 0.906 | 34.00 | 5.34 | 9.47 | 25.69 | 8.61 | ||
Stem bark | NLR | 0.813 | 8.49 | −1.04 | −10.28 | 28.60 | 11.79 | |
LR0 | 0.804 | 8.68 | 10.67 | 13.08 | 30.54 | 12.05 | ||
LRw2 | 0.805 | 8.67 | 7.19 | 9.52 | 29.12 | 12.04 | ||
Liquidambar formosana | Branch | NLR | 0.609 | 39.22 | 0.87 | −2.37 | 37.89 | 22.94 |
LR0 | 0.607 | 39.31 | 5.52 | 2.58 | 38.84 | 22.99 | ||
LRw2 | 0.608 | 39.24 | −1.23 | −3.99 | 37.68 | 22.95 | ||
Foliage | NLR | 0.597 | 6.14 | −0.39 | 7.03 | 68.27 | 23.45 | |
LR0 | 0.468 | 7.05 | 56.97 | 56.25 | 94.13 | 26.93 | ||
LRw2 | 0.494 | 6.88 | 46.92 | 46.25 | 88.25 | 26.28 | ||
Stem wood | NLR | 0.932 | 33.4 | 0.05 | −3.41 | 21.59 | 7.19 | |
LR0 | 0.931 | 33.81 | 4.84 | 3.83 | 23.20 | 7.28 | ||
LRw2 | 0.931 | 33.86 | −1.87 | −2.82 | 21.64 | 7.29 | ||
Stem bark | NLR | 0.909 | 6.20 | 0.17 | −1.53 | 27.97 | 8.28 | |
LR0 | 0.902 | 6.46 | 7.69 | 7.46 | 30.34 | 8.63 | ||
LRw2 | 0.910 | 6.19 | 0.79 | 0.57 | 28.46 | 8.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Li, H. Analysis of Error Structure for Additive Biomass Equations on the Use of Multivariate Likelihood Function. Forests 2019, 10, 298. https://doi.org/10.3390/f10040298
Cao L, Li H. Analysis of Error Structure for Additive Biomass Equations on the Use of Multivariate Likelihood Function. Forests. 2019; 10(4):298. https://doi.org/10.3390/f10040298
Chicago/Turabian StyleCao, Lei, and Haikui Li. 2019. "Analysis of Error Structure for Additive Biomass Equations on the Use of Multivariate Likelihood Function" Forests 10, no. 4: 298. https://doi.org/10.3390/f10040298
APA StyleCao, L., & Li, H. (2019). Analysis of Error Structure for Additive Biomass Equations on the Use of Multivariate Likelihood Function. Forests, 10(4), 298. https://doi.org/10.3390/f10040298