Populus simonii Carr. Reduces Wind Erosion and Improves Soil Properties in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurements of Wind Speed and Sand Transport
2.4. Measurements of Soil Properties
2.5. Data Analysis
3. Results
3.1. Effects of Stand Density and Age on Surface Erosion
3.1.1. Density and Surface Erosion
3.1.2. Age and Surface Erosion
3.2. Effects of Stand Density and Age on Soil Amelioration
3.2.1. Density and Soil Amelioration
3.2.2. Age and Soil Amelioration
3.3. Comprehensive Effects of Stand Age and Density on Surface Erosion
4. Discussion
4.1. Impacts of Poplar Stand Density and Age on Wind Velocity and Erosion
4.2. Impacts of Poplar Stand Density and Age on Soil Properties
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, Z.L.; Huang, N.; Dong, Z.B.; Van Pelt, R.; Zobeck, T. Wind erosion induced soil degradation in northern China: Status, measures and perspective. Sustainability 2014, 6, 8951–8966. [Google Scholar] [CrossRef]
- Chappell, A.; Lee, J.A.; Baddock, M.; Gill, T.E.; Herrick, J.E.; Leys, J.F.; Marticorena, B.; Petherick, L.; Schepanski, K.; Tatarko, J.; et al. A clarion call for aeolian research to engage with global land degradation and climate change. Aeolian Res. 2018, 32, A1–A3. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Zhang, K.C.; An, Z.S.; Cai, D.W.; Guo, Z.C.; Xiao, J.H. Key role of desert–oasis transitional area in avoiding oasis land degradation from aeolian desertification in Dunhuang, Northwest China. Land Degrad. Dev. 2017, 28, 142–150. [Google Scholar] [CrossRef]
- Ouyang, Z.H.; Zheng, H.; Xiao, Y.; Polasky, S.P.; Liu, J.G.; Xu, W.H.; Wang, Q.; Zhang, L.; Xia, Y. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Li, F.R.; Zhao, A.F.; Zhou, H.Y.; Zhang, T.H.; Zhao, X. Effects of simulated grazing on growth and persistence of Artemisia frigida in a semiarid sandy rangeland. Grass Forage Sci. 2002, 57, 239–246. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, C.X.; Hasi, E.; Dong, Z.B. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ. 2010, 74, 13–22. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; Liu, J.; He, B.; Lei, T.; Wang, Q. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing–Tianjin sand source region of China. Ecol. Eng. 2013, 52, 37–50. [Google Scholar] [CrossRef]
- Richardson, J.; Cooke, J.E.K.; Isebrands, J.G.; Thomas, B.R.; Van Rees, K.C.J. Poplar research in Canada—a historical perspective with a view to the future. Botany 2007, 85, 1136–1146. [Google Scholar]
- Chendev, Y.G.; Sauer, T.J.; Ramirez, G.H.; Burras, C.L. History of east European chernozem soil degradation; protection and restoration by tree windbreaks in the Russian steppe. Sustainability 2015, 7, 705–724. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Bell, S. Simulating the sheltering effects of windbreaks in urban outdoor open space. J. Wind Eng. Ind. Aerod. 2007, 95, 533–549. [Google Scholar] [CrossRef]
- Zhan, K.J.; Liu, S.Z.; Yang, Z.H.; Fang, E.T.; Zhou, L.P.; Huang, N. Effects of sand-fixing and windbreak forests on wind flow: A synthesis of results from field experiments and numerical simulations. J. Arid. Land 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Zhu, J.J. A review of the present situation and future prospect of science of protective forest. Chin. J. Plant Ecol. 2013, 37, 872–888. [Google Scholar] [CrossRef]
- Cheng, G.D.; Li, X.; Zhao, W.Z.; Xu, Z.M.; Feng, Q.; Xiao, S.C.; Xiao, H.L. Integrated study of the water–ecosystem–economy in the Heihe River Basin. Natl. Sculpt. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Zhou, H. A simulation study on the eco-environmental effects of 3N Shelterbelt in North China. Glob. Planet Chang. 2003, 37, 231–246. [Google Scholar]
- Tun, T.N.; Guo, J.; Fang, S.Z.; Tian, Y. Planting spacing affects canopy structure, biomass production and stem roundness in poplar plantations. Scand. J. For. Res. 2018, 33, 464–474. [Google Scholar] [CrossRef]
- Amichev, B.Y.; Bentham, M.J.; Cerkowniak, D.; Kort, J.; Kulshreshtha, S.; Laroque, C.P.; Piwowar, J.M.; Van Rees, K.J. Mapping and quantification of planted tree and shrub shelterbelts in Saskatchewan, Canada. Agrofor. Syst. 2015, 89, 49–65. [Google Scholar] [CrossRef]
- Li, F.R.; Liu, J.L.; Sun, T.S.; Ma, L.F.; Liu, L.L.; Yang, K. Impact of established shrub shelterbelts around oases on the diversity of ground beetles in arid ecosystems of Northwestern China. Insect Conserv. Diver. 2016, 9, 135–148. [Google Scholar] [CrossRef]
- Leenders, J.K.; Sterk, G.; van Boxel, J.H. Wind erosion reduction by scattered woody vegetation in farmers’ fields in northern Burkina Faso. Land Degrad. Dev. 2016, 27, 1863–1872. [Google Scholar] [CrossRef]
- Borrelli, P.; Lugato, E.; Montanarella, L.; Panagos, P. A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach. Land Degrad. Dev. 2017, 28, 335–344. [Google Scholar] [CrossRef]
- Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, C.D. A conceptual framework for dryland aeolian sediment transport along the grassland–forest continuum: Effects of woody plant canopy cover and disturbnce. Geomorphology 2009, 105, 28–38. [Google Scholar] [CrossRef]
- Bao, Y.H.; Li, H.Y.; Yang, J.H. Effects of Shelterbelts on Wind Erosion Control in the Desertified Cropland of North-Western Shandong Province, China. In Proceedings of the 2011 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 10–12 May 2011. [Google Scholar]
- Leenders, J.K.; Visser, S.M.; Stroosnijder, L. Farmers’ perceptions of the role of scattered vegetation in wind erosion control on arable land in Burkina Faso. Land Degrad. Dev. 2005, 16, 327–337. [Google Scholar] [CrossRef]
- Mao, R.; Zeng, D.H.; Hu, Y.L.; Li, L.J.; Yang, D. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 2010, 332, 77–287. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W. Poplar forests in NE China and possible influences on soil properties: Ecological importance and sustainable development. In Poplars & Willows, Cultivation, Applications & Environmental Benefits; Desmond, M., Ed.; Nova Publishers: Hauppauge, NY, USA, 2016; pp. 1–28. [Google Scholar]
- Wang, W.J.; Liu, W.; Sun, W.; Zu, Y.G.; Cui, S. Influences of forest floor cleaning on the soil respiration and soil physical property of a larch plantation in Northeast China. stxben 2008, 28, 4750–4756. [Google Scholar]
- Liu, C.C.; Zheng, Z.Q.; Cheng, H.; Zou, X.Y. Airflow around single and multiple plants. Agric. For. Meteorol. 2018, 252, 27–38. [Google Scholar] [CrossRef]
- Yan, Y.C.; Wang, X.; Guo, Z.J.; Chen, J.Q.; Xin, X.P.; Xu, D.W.; Yan, R.R.; Chen, B.R.; Xu, L.J. Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China. Catena 2018, 170, 159–168. [Google Scholar] [CrossRef]
- Li, G.S.; Qu, J.J.; Han, Q.J.; Fang, H.Y.; Wang, W.F. Responses of three typical plants to wind erosion in the shrub belts atop Mogao Grottoes, China. Ecol. Eng. 2013, 57, 293–296. [Google Scholar] [CrossRef]
- Lv, P.; Dong, Z.B. Study of the windbreak effect of shrubs as a function of shrub cover and height. Environm. Earth Sci. 2012, 66, 1791–1795. [Google Scholar] [CrossRef]
- Okin, G.S.; Gillette, D.A. Distribution of vegetation in wind-dominated landscapes: Implications for wind erosion modeling and landscape processes. J. Geophys. Res.-Atmos. 2001, 106, 9673–9683. [Google Scholar] [CrossRef] [Green Version]
- Burri, K.; Gromke, C.; Lehning, M.; Graf, F. Aeolian sediment transport over vegetation canopies: A wind tunnel study with live plants. Aeolian Res. 2011, 3, 205–213. [Google Scholar] [CrossRef]
- Dupont, S.; Bergametti, G.; Simoëns, S. Modeling aeolian erosion in presence of vegetation. J. Geophys. Res.-Earth 2014, 119, 168–187. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, W.M.; Gabriels, D. Optimal windbreak design for wind-erosion control. J. Arid Environ. 2005, 61, 315–332. [Google Scholar] [CrossRef]
- Cui, Q.; Feng, Z.; Pfiz, M.; Veste, M.; Kuppers, M.; He, K.N.; Gao, J.R. Trade-off between shrub plantation and wind-breaking in the arid sandy lands of Ningxia, China. Pak. J. Bot. 2012, 44, 1639–1649. [Google Scholar]
- Dong, Z.B.; Chen, G.T.; He, X.D.; Han, Z.W.; Wang, X.M. Controlling blown sand along the highway crossing the Taklimakan Desert. J. Arid Environ. 2004, 57, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Jeddi, K.; Chaie, M. Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environments of South Tunisia. Flora 2010, 205, 184–189. [Google Scholar] [CrossRef]
- Sun, S.J.; Qiu, L.F.; He, C.X.; Li, C.Y.; Zhang, J.S.; Meng, P. Drought-Affected Populus simonii Carr. Show Lower Growth and Long-Term Increases in Intrinsic Water-Use Efficiency Prior to Tree Mortality. Forests 2018, 9, 564. [Google Scholar] [CrossRef]
- Zuo, X.A.; Zhao, X.Y.; Zhao, H.L.; Zhang, T.H.; Guo, Y.R.; Li, Y.Q.; Huang, Y.X. Spatial heterogeneity of soil properties and vegetation–soil relationships following vegetation restoration of mobile dunes in Horqin Sandy Land, Northern China. Plant Soil 2009, 318, 153–167. [Google Scholar] [CrossRef]
- Su, Y.Z.; Li, Y.L.; Cui, J.Y.; Zhao, W.Z. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, Northern China. Catena 2005, 59, 267–278. [Google Scholar]
Field Site | Age (years) | Density (trees·hm−2) | Mean Height (m) | Mean Diameter at Breast Height (cm) | Average Crown Extension (m) |
---|---|---|---|---|---|
A1 | 15 | 750 | 5.2 | 10.3 | 2.4 |
A2 | 21 | 750 | 7.6 | 12.9 | 2.8 |
A3 | 28 | 750 | 11.0 | 18.9 | 3.9 |
A4 | 32 | 750 | 11.7 | 20.8 | 3.6 |
A5 | 37 | 750 | 18.1 | 24.0 | 5.4 |
A6 | 41 | 750 | 22.0 | 27.9 | 5.5 |
D1 | 15 | 500 | 5.7 | 10.6 | 2.9 |
D2 | 15 | 750 | 5.2 | 10.3 | 2.4 |
D3 | 15 | 1025 | 6.1 | 10.2 | 2.7 |
D4 | 15 | 1200 | 5.6 | 10.0 | 2.5 |
D5 | 15 | 1425 | 5.4 | 10.5 | 3.1 |
D6 | 15 | 1700 | 5.3 | 10.5 | 2.5 |
CK | 0 | 0 | 0 | 0 | 0 |
x (trees·hm−2) | y (years) | z (g·m−2) | x (trees·hm−2) | y (years) | z (g·m−2) | x (trees·hm−2) | y (years) | z (g·m−2) | x (trees·hm−2) | y (years) | z (g·m−2) | x (trees·hm−2) | y (years) | z (g·m−2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
400 | 10 | 1.47 | 400 | 20 | 1.16 | 400 | 30 | 0.86 | 400 | 40 | 0.58 | 400 | 50 | 0.32 |
600 | 10 | 1.17 | 600 | 20 | 0.85 | 600 | 30 | 0.55 | 600 | 40 | 0.27 | 600 | 50 | 0.01 |
800 | 10 | 0.94 | 800 | 20 | 0.62 | 800 | 30 | 0.32 | 800 | 40 | 0.04 | 800 | 50 | −0.22 |
1000 | 10 | 0.77 | 1000 | 20 | 0.45 | 1000 | 30 | 0.16 | 1000 | 40 | −0.12 | 1000 | 50 | −0.38 |
1200 | 10 | 0.68 | 1200 | 20 | 0.36 | 1200 | 30 | 0.06 | 1200 | 40 | −0.22 | 1200 | 50 | −0.47 |
1400 | 10 | 0.66 | 1400 | 20 | 0.34 | 1400 | 30 | 0.04 | 1400 | 40 | −0.24 | 1400 | 50 | −0.50 |
1600 | 10 | 0.71 | 1600 | 20 | 0.39 | 1600 | 30 | 0.09 | 1600 | 40 | −0.19 | 1600 | 50 | −0.45 |
1800 | 10 | 0.83 | 1800 | 20 | 0.51 | 1800 | 30 | 0.21 | 1800 | 40 | −0.07 | 1800 | 50 | −0.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Jia, G.; Liu, Z.; Wang, D.; Yu, X. Populus simonii Carr. Reduces Wind Erosion and Improves Soil Properties in Northern China. Forests 2019, 10, 315. https://doi.org/10.3390/f10040315
Zhang J, Jia G, Liu Z, Wang D, Yu X. Populus simonii Carr. Reduces Wind Erosion and Improves Soil Properties in Northern China. Forests. 2019; 10(4):315. https://doi.org/10.3390/f10040315
Chicago/Turabian StyleZhang, Jieming, Guodong Jia, Ziqiang Liu, Dandan Wang, and Xinxiao Yu. 2019. "Populus simonii Carr. Reduces Wind Erosion and Improves Soil Properties in Northern China" Forests 10, no. 4: 315. https://doi.org/10.3390/f10040315
APA StyleZhang, J., Jia, G., Liu, Z., Wang, D., & Yu, X. (2019). Populus simonii Carr. Reduces Wind Erosion and Improves Soil Properties in Northern China. Forests, 10(4), 315. https://doi.org/10.3390/f10040315