Short Rotation Eucalypts: Opportunities for Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. EH1 Planting Density Demonstration
2.2. EH1 Fertilizer x Planting Density Study
2.3. Biochar Tests
2.4. Biochar–Fertilizer Study
3. Results
3.1. EH1 Planting Density Demonstration
3.2. EH1 Fertilizer x Planting Density Study
3.3. Biochar Tests
3.4. Biochar–Fertilizer Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carle, J.; Homgren, P. Wood from planted forests: A global outlook 2005–2030. For. Prod. J. 2008, 58, 6–18. [Google Scholar]
- Sims, R.E.H.; Hastings, A.; Schlamadinger, B.; Taylor, G.; Smith, P. Energy crops: current status and future prospects. Glob. Chang. Biol. 2006, 12, 2054–2076. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Rudie, A.W.; Ralph, S.A.; Zhu, J.; Winandy, J.E. Energy product options for Eucalyptus species grown as short rotation woody crops. Int. J. Mol. Sci. 2008, 9, 1361–1378. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, D.L. History and status of Eucalyptus improvement in Florida. Int. J. For. Res. 2012, 2012, 607879. [Google Scholar]
- Rockwood, D.L.; Peter, G.F. Eucalyptus and Corymbia species for mulchwood, pulpwood, energywood, bioproducts, windbreaks, and/or phytoremediation. Florida Cooperative Extension Service Circular 1194. 2018. Available online: http://edis.ifas.ufl.edu/FR013 (accessed on 10 September 2018).
- Fabbro, K.W.; Rockwood, D.L. Optimal management and productivity of Eucalyptus grandis on former phosphate mined and citrus lands in central and southern Florida: Influence of genetics and spacing. In Proceedings of the 18th Biennial Southern Silvicultural Research Conference, Knoxville, TN, USA, 2–5 March 2015, e-Gen; Tech. Rpt. SRS-212; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2016; pp. 510–517. [Google Scholar]
- Ahmed, A.; Kurian, J.; Raghavan, V. Biochar influences on agricultural soils, crop production, and the environment: A review. Environ. Rev. 2016, 24, 495–502. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Ahmed, F.; Arthur, E.; Plauborg, F.; Razzaghi, F.; Korup, K.; Andersen, M.N. Biochar amendment of fluvio-glacial temperate sandy subsoil: Effects on maize water uptake, growth and physiology. J. Agron. Crop Sci. 2018, 204, 123–136. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Bruun, E.W.; Petersen, C.T.; Hansen, E.; Holm, J.K.; Hauggaard-Nielsen, H. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag. 2014, 30, 109–118. [Google Scholar] [CrossRef]
- Hussein, H.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H. Biochar for crop production: potential benefits and risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Grand View Research. Global Biochar Market Estimates and Forecast, 2012–2025; Report issued; Grand View Research: San Francisco, CA, USA, 2017. [Google Scholar]
- Du Plessis, M.; Kotze, H. Growth and yield models for Eucalyptus grandis grown in Swaziland. South. For. 2011, 73, 81–89. [Google Scholar] [CrossRef]
- Kuo, K. Phosphorus. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Mehlich, A. Mehlich No. 3 soil test extractant: A modification of Mehlich No.2 extractant. Commun. Soil Sci. Soc. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Langholtz, M.; Carter, D.R.; Rockwood, D.L. Assessing the Economic Feasibility of Short-Rotation Woody Crops in Florida. Florida Cooperative Extension Service Circular 1516. 2007. Available online: http://edis.ifas.ufl.edu/FR169 (accessed on 10 September 2018).
- Rockwood, D.L.; Dippon, D.R.; Lesney, M.S. Woody Species for Biomass Production in Florida. Final Report 1983–1988; ORNL/Sub/81-9050/7; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1988; 153p. [Google Scholar]
- Rockwood, D.L.; Carter, D.R.; Stricker, JA. Commercial Tree Crops on Phosphate Mined Lands; FIPR Publication #03-141-225; Florida Institute of Phosphate Research: Bartow, FL, USA, 2008; 123p. [Google Scholar]
- Zalesny, R.S., Jr.; Cunningham, M.W.; Hall, R.B.; Mirck, J.; Rockwood, D.L.; Stanturf, J.A.; Volk, T.A. Chapter 2. Woody Biomass from Short Rotation Energy Crops. In ACS Symposium Book: Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass; Zhu, J., Zhang, X., Pan, X., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 27–63. [Google Scholar]
- Perez-Cruzado, C.; Merino, A.; Rodriguez-Soalleiro, R. A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass Bioenergy 2011, 35, 2839–2851. [Google Scholar] [CrossRef]
- Morales, M.; Aroca, G.; Rubilar, R.; Acuna, E.; Mola-Yudego, B.; Gonzalez-Garcia, S. Cradle-to-gate life cycle assessment of Eucalyptus globulus short rotation plantations in Chile. J. Clean. Prod. 2015, 99, 239–249. [Google Scholar] [CrossRef]
- Hinchee, M.; Rottman, W.; Mullinax, L.; Zhang, C.; Chang, S.; Cunningham, M.; Pearson, L.; Nehra, N. Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell. Dev. Biol.-Plant 2009, 45, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Harper, R.J.; Sochacki, S.J.; Smettem, R.J.; Robinson, N. Bioenergy feedstock potential from short-rotation woody crops in a dryland environment. Energy Fuels 2010, 24, 225–231. [Google Scholar] [CrossRef]
- Stape, J.L.; Binkley, D. Insights from full-rotation Nelder spacing trials with Eucalyptus in Sao Paulo, Brazil. South. For. 2010, 72, 91–98. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Tamang, B.; Kirst, M.; Zhu, J.Y. Field performance and bioenergy characteristics of four Eucalyptus grandis cultivars in Florida. In Proceedings of the 16th Biennial Southern Silvicultural Research Conference, Charleston, SC, USA, 15–17 February 2011; pp. 267–268. [Google Scholar]
- Sackett, T.E.; Basiliko, N.; Noyce, G.L.; Winsborough, C.; Schurman, J.; Ikeda, C.; Thomas, S.C. Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy 2015, 7, 1062–1074. [Google Scholar] [CrossRef]
- Li, Y.; Hu, S.; Chen, J.; Muller, K.; Li, Y.; Fu, W.; Lin, Z.; Wang, H. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. J. Soils Sediments 2018, 18, 546. [Google Scholar] [CrossRef]
- Dempster, D.; Gleeson, D.; Solaiman, Z.; Jones, D.; Murphy, D. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 2012, 354, 311–324. [Google Scholar] [CrossRef]
- Lin, Z.B.; Liu, Q.; Liu, G.; Cowie, A.L.; Bei, Q.C.; Liu, B.J.; Wang, X.J.; Ma, J.; Zhu, J.G.; Xie, Z.B. Effects of different biochars on Pinus elliottii growth, N use efficiency, soil N2O and CH4 emissions and C storage in a subtropical area of China. Pedosphere 2017, 27, 248–261. [Google Scholar] [CrossRef]
- Mertens, J.; Germer, J.; de Araújo Filho, J.C.; Sauerborn, J. Effect of biochar, clay substrate and manure application on water availability and tree-seedling performance in a sandy soil. Arch. Agron. Soil Sci. 2017, 63, 969–983. [Google Scholar] [CrossRef]
- Wrobel-Tobiszewska, A.; Boersma, M.; Adams, P.; Singh, B.; Franks, S.; Sargison, J.E. Biochar for eucalyptus forestry plantations. Acta Hortic. 2016, 1108, 55–62. [Google Scholar] [CrossRef]
- De Farias, J.; Marimon, B.S.; de Carvalho Ramos Silva, L.; Petter, F.A.; Andrade, F.R.; Morandi, P.S.; Marimon-Junior, B.H. Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla × Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. For. Ecol. Manag. 2016, 368, 173–182. [Google Scholar] [CrossRef]
- Glisczynski, F.V.; Pude, R.; Amelung, W.; Sandhage-Hofmann, A. Biochar-compost substrates in short-rotation coppice: effects on soil and trees in a three-year field experiment. J. Plant Nutr. Soil Sci. 2016, 179, 574–583. [Google Scholar] [CrossRef]
- Gardiner, E.S.; Ghezehei, S.B.; Headlee, W.L.; Richardson, J.; Soolanayakanahally, R.Y.; Stanton, B.J.; Zalesny, R.S., Jr. The 2018 Woody Crops International Conference, Rhinelander, Wisconsin, USA, 22–27 July 2018. Forests 2018, 9, 693. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Bowman, R.L. Medically related products obtainable from Eucalyptus trees. Int. Biol. Rev. 2017, 1, 1–10. [Google Scholar]
- Castro, E.; Nieves, I.U.; Mullinnix, M.T.; Sagues, W.J.; Hoffman, R.W.; Fernández-Sandoval, M.T.; Tian, Z.; Rockwood, D.L.; Tamang, B.; Ingram, L.O. Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. Appl. Energy 2014, 125, 76–83. [Google Scholar] [CrossRef]
- Wang, G.S.; Pan, X.J.; Zhu, J.Y.; Rockwood, D.L. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnol. Prog. 2009, 25, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
Activity | Cost |
---|---|
Land Preparation | $988/ha |
Chemical Site Prep | $297/ha |
Propagules | $0.70/tree |
Planting Cost | $0.40/tree |
Irrigation + Fertilization (High management only) | $1977/ha |
Fertilization at Initial Establishment (Low management only) | $173/ha |
Weed Control (Beginning of coppice stage) | $136/ha |
Planting Density (trees/ha) | MAImax (green mt/ha/year) | Rotation Age at MAImax (years) |
---|---|---|
1181 | 44.00 | 5.0 |
2071 | 54.63 | 4.0 |
2471 | 58.98 | 3.7 |
Stumpage Price ($) | Discount Rate (%) | NPVmax ($/ha) | IRR (%) | Stage Length (years) |
---|---|---|---|---|
2071 trees/ha, Low Management Intensity ($1458/ha + $1.10/tree + $136/ha @coppice) | ||||
11.02 | 6 | 751 | 8.1 | 5.1, 5.4, 5.8 |
8 | 70 | 8.2 | 4.9, 5.1, 5.6 | |
22.05 | 6 | 5365 | 18.1 | 5.1, 5.4, 5.8 |
8 | 3986 | 18.6 | 4.8, 5.1, 5.6 | |
2071 trees/ha, High Management Intensity ($3262/ha + $1.10/tree + $136/ha @coppice) | ||||
11.02 | 6 | −1053 | 3.6 | 5.1, 5.4, 5.8 |
8 | −1734 | 3.5 | 4.9, 5.1, 5.6 | |
22.05 | 6 | 3561 | 12.2 | 5.1, 5.4, 5.8 |
8 | 2182 | 12.5 | 4.8, 5.1, 5.6 | |
1181 trees/ha, Low Management Intensity ($,458/ha + $1.10/tree + $136/ha @coppice) | ||||
11.02 | 6 | 1377 | 10.3 | 6.3, 6.7, 7.4 |
8 | 660 | 10.5 | 5.9, 6.3, 7.0 | |
22.05 | 6 | 5509 | 19.2 | 6.3, 6.7, 7.4 |
8 | 4058 | 19.9 | 5.9, 6.2, 7.0 | |
1181 trees/ha, High Management Intensity ($3262/ha + $1.10/tree + $136/ha @coppice) | ||||
11.02 | 6 | −427 | 5.0 | 6.3, 6.7, 7.4 |
8 | −1143 | 4.9 | 5.9, 6.3, 7.0 | |
22.05 | 6 | 3705 | 12.4 | 6.3, 6.7, 7.4 |
8 | 2254 | 12.7 | 5.9, 6.2, 7.0 |
Trait: Age | Planting Density | Fertilizer | Density Average | ||||
---|---|---|---|---|---|---|---|
0 | GE 100 | GE 200 | GE 300 | DAP | |||
Height 9-mo | 3588 | 3.86 | 4.62 | 5.66 | 5.02 | 3.36 | 4.60a |
1794 | 2.83 | 2.80 | 3.76 | 3.54 | 2.97 | 3.17ab | |
1196 | 3.81 | 3.35 | 5.03 | 4.41 | 3.65 | 4.02ab | |
Fert. Ave. | 3.43b | 3.43b | 4.71a | 4.24ab | 3.33b | 3.83 | |
DBH 36-mo | 3588 | 9.4 | 9.8 | 9.8 | 10.8 | 6.7 | 9.3b |
1794 | 10.6 | 9.6 | 11.8 | 10.8 | 12.0 | 10.9ab | |
1196 | 14.8 | 12.2 | 14.7 | 12.1 | 12.6 | 13.2ab | |
Fert. Ave. | 11.8 | 10.7 | 12.6 | 11.3 | 11.2 | 11.5 | |
Basal Area 36-mo | 3588 | 27.3 | 27.1 | 31.5 | 33.0 | 13.0 | 26.5a |
1794 | 16.1 | 15.0 | 19.9 | 18.1 | 20.7 | 17.8b | |
1196 | 20.8 | 14.1 | 20.5 | 14.1 | 14.9 | 16.8b | |
Fert. Ave. | 20.4 | 17.1 | 22.5 | 19.5 | 16.5 | 19.2 | |
DBH 41-mo | 3588 | 9.9 | 11.1 | 10.8 | 11.7 | 7.7 | 10.3b |
1794 | 13.2 | 10.6 | 13.1 | 12.1 | 12.2 | 12.3ab | |
1196 | 16.0 | 11.9 | 15.3 | 13.6 | 14.1 | 14.2a | |
Fert. Ave. | 13.7a | 11.2b | 13.2ab | 12.6ab | 12.0ab | 12.5 | |
Basal Area 41-mo | 3588 | 24.7 | 35.5 | 39.9 | 38.9 | 17.6 | 31.9a |
1794 | 25.6 | 18.0 | 24.7 | 22.4 | 21.8 | 22.5b | |
1196 | 24.5 | 14.5 | 22.6 | 17.9 | 18.9 | 19.6c | |
Fert. Ave. | 25.0a | 20.8b | 29.3a | 25.4a | 19.6b | 23.8 |
Property (% of Dry Weight) | G2 | CT | EH1 | EA | Qv |
---|---|---|---|---|---|
Volatile Matter | 83.3 | 85.0 | 85.9 | 82.5 | 83.3 |
Fixed Carbon | 15.7 | 14.4 | 13.7 | 17.0 | 15.5 |
Ash | 1.00 | 0.54 | 0.37 | 0.50 | 1.15 |
Moisture Content | 36.4 | 48.0 | 43.1 | 30.1 | 33.1 |
C | 49.2 | 49.7 | 49.8 | 50.8 | 49.1 |
O | 43.0 | 43.1 | 43.1 | 42.0 | 43.1 |
H | 6.5 | 6.5 | 6.5 | 6.5 | 6.4 |
N | 0.21 | 0.17 | 0.17 | 0.26 | 0.29 |
Cl | 0.07 | 0.02 | 0.02 | 0.02 | 0.00 |
S | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 |
Property | Florida Tree | Polchar Biochar | ||||
---|---|---|---|---|---|---|
G2 | CT | EH1 | EA | QV | ||
Recalcitrant Carbon * (%) | 76.0 | 71.6 | 74.0 | 70.8 | 71.8 | 67.6 |
pH | 10.6 | 10.4 | 10.5 | 11.1 | 11.9 | 8.2 |
EC (mmhos/cm) | 0.57 | 1.76 | 1.56 | 3.88 | 1.14 | 3.33 |
Water Holding (mL/100 g) | 75.9 | 78.8 | 79.8 | 69.0 | 68.5 | 43.4 |
Carbonate Value (%) | 2.6 | 2.5 | 5.6 | 16.7 | 2.5 | - |
Soil Property * | |||||
---|---|---|---|---|---|
Treatment | pH | EC (uS/cm) | NO3-N (mg/kg) | NH4-N (mg/kg) | P (mg/kg) |
Before GE and GE + BC Applications | |||||
GE | 6.30 ± 0.73 | 46.1b ± 28.8 | 2.36 ± 0.51 | 0.80 ± 0.41 | 7.27 ± 3.24 |
GE + BC | 5.32 ± 0.28 | 58.6a ± 23.1 | 4.08 ± 1.34 | 1.63 ± 0.74 | 7.26 ± 5.14 |
5 Months After GE and GE + BC Applications | |||||
GE | 6.25 ± 0.83 | 82.6 ± 28.9 | 3.51 ± 1.20 | 1.88 ± 1.07 | 7.84b ± 1.33 |
GE + BC | 6.15 ± 0.69 | 96.1 ± 30.3 | 3.84 ± 1.31 | 2.17 ± 1.19 | 10.84a ± 2.42 |
11 Months After GE and GE + BC Applications | |||||
GE | 6.01 ± 0.55 | 27.1 ± 3.1 | 1.42 ± 0.27 | 0.85a ± 0.18 | 6.01 ± 1.09 |
GE + BC | 5.96 ± 0.30 | 29.4 ± 2.5 | 2.15 ± 0.39 | 1.33a ± 0.30 | 6.26 ± 1.36 |
Control | 5.44 ± --- | 21.3 ± --- | 0.83 ± --- | 0.32b ± --- | 2.01 ± --- |
Treatment | Leaf Nutrient * | |||||||
---|---|---|---|---|---|---|---|---|
Ca | K | Mg | P | Zn | Cu | Fe | Mn | |
Before GE and GE + BC Applications | ||||||||
GE | 9.8 ± 4.2 | 10.8 ± 1.8 | 2.47 ± 0.52 | 0.83 ± 0.36 | 140 ± 67 | 22.5 ± 3.3 | 32.0 ± 12.6 | 235 ± 162 |
GE + BC | 4.8 ± 2.5 | 10.7 ± 1.6 | 2.12 ± 0.39 | 0.95 ± 0.49 | 85 ± 50 | 19.2 ± 4.4 | 21.7 ± 5.1 | 191 ± 105 |
5 Months After GE and GE + BC Applications | ||||||||
GE | 17.2 ± 2.6 | 20.7 ± 6.9 | 4.93 ± 0.84 | 3.78 ± 0.38 | 95b ± 12 | 14.7 ± 6.5 | 64.7 ± 36.6 | 263 ± 75 |
GE + BC | 18.2 ± 2.9 | 20.4 ± 2.7 | 5.70 ± 1.08 | 3.67 ± 0.51 | 100a ± 12 | 9.8 ± 6.2 | 28.8 ± 19.0 | 317 ± 99 |
11 Months After GE and GE + BC Applications | ||||||||
GE | 16.2 ± 1.6 | 4.9 ± 0.6 | 2.51 ± 0.29 | 1.50 ± 0.30 | 61 ± 11 | 19.5 ± 2.4 | 83.5 ± 14.1 | 205 ± 16 |
GE + BC | 14.3 ± 2.6 | 5.7 ± 1.2 | 2.78 ± 0.48 | 1.59 ± 0.13 | 60 ± 11 | 17.5 ± 2.4 | 88.4 ± 14.9 | 234 ± 42 |
Control | 13.1 ± -- | 5.3 ± -- | 2.64 ± --- | 1.17 ± --- | 74 ± -- | 18.1 ± -- | 88.6 ± --- | 224 ± --- |
Trait: Age | Cultivar | Treatment * | All Treatments | ||
---|---|---|---|---|---|
GE | GE + BC | Control | |||
Height 5-mo | G3 | 0.8 | 1.3 | 1.0 | |
G4 | 1.1 | 1.3 | 1.2 | ||
G5 | 1.0 | 1.1 | 1.0 | 1.1 | |
All Cultivars | 1.0 | 1.2 | 1.0 | 1.0 | |
Height 11-mo | G3 | 1.6 | 2.5 | 2.1 | |
G4 | 2.3 | 2.7 | 2.5 | ||
G5 | 2.2 | 2.3 | 1.4 | 2.1 | |
All Cultivars | 2.0 | 2.5 | 1.4 | 2.2 | |
Height 16-mo | G3 | 2.5 | 4.8 | 3.6 | |
G4 | 5.1 | 5.0 | 5.1 | ||
G5 | 4.2ab | 5.1a | 2.2b | 4.2 | |
All Cultivars | 4.0 | 5.0 | 2.2 | 4.3 | |
DBH 16-mo | G3 | 1.5 | 4.0 | 2.8 | |
G4 | 4.2 | 4.2 | 4.2 | ||
G5 | 3.5ab | 4.4a | 1.4b | 3.5 | |
All Cultivars | 3.1 | 4.2 | 1.4 | 3.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rockwood, D.L.; Ellis, M.F.; Liu, R.; Zhao, F.; Ji, P.; Zhu, Z.; Fabbro, K.W.; He, Z.; Cave, R.D. Short Rotation Eucalypts: Opportunities for Biochar. Forests 2019, 10, 314. https://doi.org/10.3390/f10040314
Rockwood DL, Ellis MF, Liu R, Zhao F, Ji P, Zhu Z, Fabbro KW, He Z, Cave RD. Short Rotation Eucalypts: Opportunities for Biochar. Forests. 2019; 10(4):314. https://doi.org/10.3390/f10040314
Chicago/Turabian StyleRockwood, Donald L., Martin F. Ellis, Ruliang Liu, Fengliang Zhao, Puhui Ji, Zhiqiang Zhu, Kyle W. Fabbro, Zhenli He, and Ronald D. Cave. 2019. "Short Rotation Eucalypts: Opportunities for Biochar" Forests 10, no. 4: 314. https://doi.org/10.3390/f10040314
APA StyleRockwood, D. L., Ellis, M. F., Liu, R., Zhao, F., Ji, P., Zhu, Z., Fabbro, K. W., He, Z., & Cave, R. D. (2019). Short Rotation Eucalypts: Opportunities for Biochar. Forests, 10(4), 314. https://doi.org/10.3390/f10040314