Overhead Protection Increases Fuel Quality and Natural Drying of Leaf-On Woody Biomass Storage Piles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvests and Storage
2.2. Study Plan
2.3. Monitoring, Sampling, and Laboratory Analysis
2.4. Statistical Analyses
3. Results
3.1. Weather Conditions and Pile Temperatures
3.2. Moisture
3.3. Higher and Lower Heating Values
3.4. Ash
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brandt, C.C.; Davis, M.R.; Davison, B.; Eaton, L.M.; Efroymson, R.A.; Hilliard, M.R.; Kline, K.; Langholtz, M.H.; Myers, A.; Sokhansanj, S.; et al. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks; Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2016. [Google Scholar]
- Amichev, B.Y.; Hangs, R.D.; Konecsni, S.M.; Stadnyk, C.N.; Volk, T.A.; Bélanger, N.; Vujanovic, V.; Schoenau, J.J.; Moukoumi, J.; Van Rees, K.C. Willow Short-Rotation Production Systems in Canada and Northern United States: A Review. Soil Sci. Soc. J. 2014, 78, 78. [Google Scholar] [CrossRef]
- Volk, T.; Abrahamson, L.; Nowak, C.; Smart, L.; Tharakan, P.; White, E. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 2006, 30, 715–727. [Google Scholar] [CrossRef]
- Volk, T.A.; Abrahamson, L.; Buchholz, T.; Caputo, J.; Eisenbies, M. Development and Deployment of Willow Biomass Crops. In Cellulosic Energy Cropping Systems; Wiley: Hoboken, NJ, USA, 2014; pp. 201–217. [Google Scholar]
- Volk, T.A.; Eisenbies, M.H.; Heavey, J.P. Recent developments in shrub willow crops in the U.S. for bioenergy, bioproducts and bioremediation. In Proceedings of the Biomass and energy crops V, Brussels, Belgium, 20–22 October 2015; Association of Applied Biologists: Wellesbourne, UK, 2015; pp. 1–10. [Google Scholar]
- Lamers, P.; Tan, E.C.D.; Searcy, E.M.; Scarlata, C.J.; Cafferty, K.G.; Jacobson, J.J. Strategic supply system design—A holistic evaluation of operational and production cost for a biorefinery supply chain: Strategic biorefinery feedstock supply system design. Biofuels Bioprod. Biorefining 2015, 9, 648–660. [Google Scholar] [CrossRef]
- Yang, Y.; Sharifi, V.; Swithenbank, J. Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds. Fuel 2004, 83, 1553–1562. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Posselius, J.; Foster, C.; Shi, S.; Karapetyan, S. Evaluation of a Single-Pass, Cut and Chip Harvest System on Commercial-Scale, Short-Rotation Shrub Willow Biomass Crops. BioEnergy Res. 2014, 7, 1506–1518. [Google Scholar] [CrossRef]
- Noll, M.; Jirjis, R. Microbial communities in large-scale wood piles and their effects on wood quality and the environment. Appl. Microbiol. Biotechnol. 2012, 95, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.A.; De Muñiz, G.I.B.; Quirino, W.F.; Brito, J.O. Storage as a tool to improve wood fuel quality. Biomass Bioenergy 2011, 35, 2581–2588. [Google Scholar] [CrossRef]
- Filbakk, T.; Høibø, O.A.; Dibdiakova, J.; Nurmi, J. Modelling moisture content and dry matter loss during storage of logging residues for energy. Scand. J. 2011, 26, 267–277. [Google Scholar] [CrossRef]
- Pari, L.; Civitarese, V.; Del Giudice, A.; Assirelli, A.; Spinelli, R.; Santangelo, E. Influence of chipping device and storage method on the quality of SRC poplar biomass. Biomass Bioenergy 2013, 51, 169–176. [Google Scholar] [CrossRef]
- Pari, L.; Brambilla, M.; Bisaglia, C.; Del Giudice, A.; Croce, S.; Salerno, M.; Gallucci, F. Poplar wood chip storage: Effect of particle size and breathable covering on drying dynamics and biofuel quality. Biomass Bioenergy 2015, 81, 282–287. [Google Scholar] [CrossRef]
- Bedane, A.H.; Afzal, M.T.; Sokhansanj, S. Simulation of temperature and moisture changes during storage of woody biomass owing to weather variability. Biomass Bioenergy 2011, 35, 3147–3151. [Google Scholar] [CrossRef]
- Lenz, H.; Idler, C.; Hartung, E.; Pecenka, R. Open-air storage of fine and coarse wood chips of poplar from short rotation coppice in covered piles. Biomass Bioenergy 2015, 83, 269–277. [Google Scholar] [CrossRef]
- Barontini, M.; Scarfone, A.; Spinelli, R.; Gallucci, F.; Santangelo, E.; Acampora, A.; Jirjis, R.; Civitarese, V.; Pari, L. Storage dynamics and fuel quality of poplar chips. Biomass Bioenergy 2014, 62, 17–25. [Google Scholar] [CrossRef]
- Hofmann, N.; Mendel, T.; Schulmeyer, F.; Kuptz, D.; Borchert, H.; Hartmann, H. Drying effects and dry matter losses during seasonal storage of spruce wood chips under practical conditions. Biomass Bioenergy 2017, 111, 196–205. [Google Scholar] [CrossRef]
- Whittaker, C.; Yates, N.E.; Powers, S.J.; Misselbrook, T.; Shield, I. Dry Matter Losses and Greenhouse Gas Emissions from Outside Storage of Short Rotation Coppice Willow Chip. BioEnergy Res. 2016, 9, 288–302. [Google Scholar] [CrossRef]
- Gigler, J.; Van Loon, W.; Vissers, M.; Bot, G. Forced convective drying of willow chips. Biomass Bioenergy 2000, 19, 259–270. [Google Scholar] [CrossRef]
- Shahrukh, H.; Oyedun, A.O.; Kumar, A.; Ghiasi, B.; Kumar, L.; Sokhansanj, S. Net energy ratio for the production of steam pretreated biomass-based pellets. Biomass Bioenergy 2015, 80, 286–297. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Patel, A. Changes in feedstock quality in willow chip piles created in winter from a commercial scale harvest. Biomass Bioenergy 2016, 86, 180–190. [Google Scholar] [CrossRef]
- Shinners, K.J.; Wepner, A.D.; Muck, R.E.; Weimer, P.J. Aerobic and Anaerobic Storage of Single-pass, Chopped Corn Stover. BioEnergy Res. 2011, 4, 61–75. [Google Scholar] [CrossRef]
- Shah, A.; Darr, M.J.; Webster, K.; Hoffman, C. Outdoor Storage Characteristics of Single-Pass Large Square Corn Stover Bales in Iowa. Energies 2011, 4, 1687–1695. [Google Scholar] [CrossRef]
- Trois, C.; Polster, A. Effective pine bark composting with the Dome Aeration Technology. Waste Manag. 2007, 27, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Krzyżaniak, M.; Stolarski, M.J.; Niksa, D.; Tworkowski, J.; Szczukowski, S. Effect of storage methods on willow chips quality. Biomass Bioenergy 2016, 92, 61–69. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Posselius, J.; Shi, S.; Patel, A. Quality and Variability of Commercial-Scale Short Rotation Willow Biomass Harvested Using a Single-Pass Cut-and-Chip Forage Harvester. BioEnergy Res. 2014, 8, 546–559. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Therasme, O.; Hallen, K. Three bulk density measurement methods provide different results for commercial scale harvests of willow biomass chips. Biomass Bioenergy 2019, 124, 64–73. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- PRISM Climate Group, Oregon State University. Available online: http://prism.oregonstate.edu (accessed on 27 December 2018).
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Clim. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- ASTM Standard Test Method for Gross Calorific Value of Coal and Coke; ASTM standard D5865; American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- Krigstin, S.; Wetzel, S. A review of mechanisms responsible for changes to stored woody biomass fuels. Fuel 2016, 175, 75–86. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008; p. 8. [Google Scholar]
- Stehman, S.V.; Meredith, M.P. Practical analysis of factorial experiments in forestry. Can. J. For. Res. 1995, 25, 446–461. [Google Scholar] [CrossRef]
- Guidi, W.; Piccioni, E.; Ginanni, M.; Bonari, E.; Nissim, W.G. Bark content estimation in poplar (Populus deltoides L.) short-rotation coppice in Central Italy. Biomass Bioenergy 2008, 32, 518–524. [Google Scholar] [CrossRef]
- Eich, S.; Volk, T.A.; Eisenbies, M.H. Bark Content of Two Shrub Willow Cultivars Grown at Two Sites and Relationships with Centroid Bark Content and Stem Diameter. BioEnergy Res. 2015, 8, 1661–1670. [Google Scholar] [CrossRef]
- Paris, P.; Mareschi, L.; Sabatti, M.; Tosi, L.; Scarascia-Mugnozza, G. Nitrogen removal and its determinants in hybrid Populus clones for bioenergy plantations after two biennial rotations in two temperate sites in northern Italy. iFor. Biogeosci. For. 2015, 8, 668–676. [Google Scholar] [CrossRef]
- Jirjis, R. Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass Bioenergy 2005, 28, 193–201. [Google Scholar] [CrossRef]
- Whittaker, C.; Yates, N.E.; Powers, S.J.; Misselbrook, T.; Shield, I. Dry matter losses and quality changes during short rotation coppice willow storage in chip or rod form. Biomass Bioenergy 2018, 112, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wihersaari, M. Evaluation of greenhouse gas emission risks from storage of wood residue. Biomass Bioenergy 2005, 28, 444–453. [Google Scholar] [CrossRef]
- ISO 17225-4 Solid biofuels—Fuel specifications and classes 2014; ISO: Geneva, Switzerland, 2014.
- Kenney, K.L.; A Smith, W.; Gresham, G.L.; Westover, T.L. Understanding biomass feedstock variability. Biofuels 2013, 4, 111–127. [Google Scholar] [CrossRef]
- Therasme, O.; Volk, T.A.; Cabrera, A.M.; Eisenbies, M.H.; Amidon, T.E. Hot Water Extraction Improves the Characteristics of Willow and Sugar Maple Biomass with Different Amount of Bark. Front. Energy Res. 2018, 6, 93. [Google Scholar] [CrossRef]
- Williams, C.L.; Emerson, R.M.; Hernandez, S.; Klinger, J.L.; Fillerup, E.P.; Thomas, B.J. Preprocessing and Hybrid Biochemical/Thermochemical Conversion of Short Rotation Woody Coppice for Biofuels. Front. Energy Res. 2018, 6, 74. [Google Scholar] [CrossRef]
Moisture | Ash | HHV | LHV | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Source of Variation | df a | F Value | p > F | F Value | p > F | df | F Value | p > F | F Value | p > F |
Protection | 2 | 18.05 | 0.0213 | 3.27 | 0.1764 | 2 | 1.12 | 0.4321 | 30.43 | 0.0102 |
Depth | 1 | 38.85 | <0.0001 | 12.3 | 0.0008 | 1 | 0.33 | 0.5692 | 18.74 | <0.0001 |
Position | 1 | 12.91 | 0.0006 | 0.86 | 0.3581 | 1 | 0.01 | 0.919 | 9.06 | 0.0043 |
Period | 5 | 13.79 | <0.0001 | 6.6 | <0.0001 | 3 | 7.88 | 0.0002 | 24.31 | <0.0001 |
Error (Protection) | 3 | - | - | - | - | 3 | - | - | - | - |
Depth × Protection | 2 | 3.87 | 0.0255 | 0.49 | 0.614 | 2 | 0.21 | 0.81 | 0.52 | 0.5997 |
Depth × Period | 5 | 4.12 | 0.0025 | 2.29 | 0.0555 | 3 | 1.5 | 0.2276 | 3.48 | 0.0234 |
Depth × Position | 1 | 9.89 | 0.0025 | 1.61 | 0.209 | 1 | 0.1 | 0.7593 | 6.94 | 0.0115 |
Protection × Period | 10 | 10.96 | <0.0001 | 1.26 | 0.2735 | 6 | 0.4 | 0.8757 | 16.95 | <0.0001 |
Protection × Position | 2 | 0.87 | 0.4236 | 1.96 | 0.1486 | 2 | 1.49 | 0.2369 | 0.98 | 0.3826 |
Position × Period | 5 | 1.13 | 0.3518 | 3.12 | 0.0138 | 3 | 0.32 | 0.8104 | 2.02 | 0.1248 |
Protection × Position × Period | 10 | 1.23 | 0.2854 | 0.92 | 0.5176 | 6 | 1.29 | 0.2823 | 1.86 | 0.1091 |
Protection × Depth × Position | 2 | 0.56 | 0.5762 | 0.09 | 0.9117 | 2 | 1.05 | 0.3577 | 0.28 | 0.7541 |
Depth × Position × Period | 5 | 1.74 | 0.1371 | 1.34 | 0.2576 | 3 | 0.04 | 0.9881 | 2.79 | 0.0511 |
Protection × Depth × Period | 10 | 4.03 | 0.0002 | 0.78 | 0.6463 | 6 | 1.79 | 0.1234 | 3.07 | 0.0132 |
Protection × Depth × Position × Period | 10 | 0.88 | 0.55 | 0.76 | 0.6647 | 6 | 0.88 | 0.5177 | 1.48 | 0.2064 |
Error | 68 b | - | - | - | - | 45 | - | - | - | - |
Total Error | 142 c | - | - | - | - | 95 | - | - | - | - |
Storage Time (Days) | Moisture Content Differences (% Point) | Cumulative Rainfall in Days Prior to Sampling (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|
NC | C | CD | |||||||
Shell | Core | Shell | Core | Shell | Core | 1 Day | 5 Days | 10 Days | |
30 | −9.5 | −12.1 | −4.4 | −16.0 | −4.6 | −15.8 | 0 | 3.8 | 10.2 |
59 | +6.5 | −8.1 | +0.9 | −1.9 | −1.8 | −5.7 | 0 | 22.4 | 26.8 |
87 | +2.2 | +11.1 | −6.7 | −1.5 | −2.0 | +2.4 | 0 | 12.6 | 27.4 |
117 | +18.8 | −3.5 | −10.2 | +1.5 | −12.6 | −0.3 | 0 | 3.2 | 23.6 |
147 | +4.7 | +15.0 | +0.4 | −1.3 | −0.6 | −1.8 | 18.6 | 113.4 | 127.6 |
Protection | Storage Duration (Days) | Moisture (%) | LHV (MJ/Mg) | Paid $25/Mg as Received | Paid $2.81/MJ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Biomass | Gross Revenue ($) for a 35-Mg Rile | Biomass | Gross Revenue ($) for a 35-Mg Rile | ||||||||
Price | Price | ||||||||||
($/MJ) | ($/Mg) | ||||||||||
0% | 5% DML | 15% DML | 0% DML | 5% DML | 15% DML | ||||||
DML a | |||||||||||
NC | 0 | 46.2 | 8.7 | 2.87 | 875 | 875 | 875 | 24.52 | 858 | 858 | 858 |
NC | 30 | 35.4 | 11.1 | 2.26 | 729 | 721 | 707 | 31.08 | 906 | 897 | 879 |
NC | 59 | 34.6 | - | - | 720 | 705 | 677 | - | - | - | - |
NC | 87 | 41.3 | 10 | 2.5 | 801 | 777 | 729 | 28.07 | 900 | 873 | 819 |
NC | 117 | 48.9 | - | - | 921 | 884 | 810 | - | - | - | - |
NC | 147 | 58.8 | 6.3 | 3.95 | 1141 | 1084 | 970 | 17.77 | 811 | 770 | 689 |
C | 0 | 44.9 | 9 | 2.77 | 875 | 875 | 875 | 25.33 | 887 | 887 | 887 |
C | 30 | 34.7 | 11.3 | 2.22 | 739 | 731 | 716 | 31.69 | 936 | 927 | 908 |
C | 59 | 34.2 | - | - | 733 | 718 | 689 | - | - | - | - |
C | 87 | 30.1 | 12.4 | 2.02 | 690 | 669 | 628 | 34.83 | 961 | 932 | 875 |
C | 117 | 25.8 | - | - | 650 | 624 | 572 | - | - | - | - |
C | 147 | 25.3686 | 13.4 | 1.87 | 646 | 613 | 549 | 37.64 | 972 | 924 | 826 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Therasme, O.; Eisenbies, M.H.; Volk, T.A. Overhead Protection Increases Fuel Quality and Natural Drying of Leaf-On Woody Biomass Storage Piles. Forests 2019, 10, 390. https://doi.org/10.3390/f10050390
Therasme O, Eisenbies MH, Volk TA. Overhead Protection Increases Fuel Quality and Natural Drying of Leaf-On Woody Biomass Storage Piles. Forests. 2019; 10(5):390. https://doi.org/10.3390/f10050390
Chicago/Turabian StyleTherasme, Obste, Mark H. Eisenbies, and Timothy A. Volk. 2019. "Overhead Protection Increases Fuel Quality and Natural Drying of Leaf-On Woody Biomass Storage Piles" Forests 10, no. 5: 390. https://doi.org/10.3390/f10050390
APA StyleTherasme, O., Eisenbies, M. H., & Volk, T. A. (2019). Overhead Protection Increases Fuel Quality and Natural Drying of Leaf-On Woody Biomass Storage Piles. Forests, 10(5), 390. https://doi.org/10.3390/f10050390