Regulating Growth of Betula alnoides Buch. Ham. ex D. Don Seedlings with Combined Application of Paclobutrazol and Gibberellin
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Seedling Growth Response to Paclobutrazol Application
3.2. Seedling Biomass and Allocation Following Paclobutrazol Application
3.3. Seedling Leaf Area and Pigment Compositions Following Paclobutrazol Application
3.4. Growth Recovery of Paclobutrazol-Treated Seedlings Following GA3 Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeng, J.; Guo, W.F.; Zhao, Z.G.; Weng, Q.J.; Yin, G.T.; Zheng, H.S. Domestication of Betula alnoides in China: Current status and perspectives. For. Res. 2006, 19, 379–384. [Google Scholar]
- Wang, C.S.; Hein, S.; Zhao, Z.G.; Guo, J.J.; Zeng, J. Branch occlusion and discoloration of Betula alnoides under artificial and natural pruning. Forest Ecol. Manag. 2016, 375, 200–210. [Google Scholar] [CrossRef]
- Lundqvist, J. Unpredictable and significant variability of rainfall: Carryover stocks of water and food necessary. Rev. Environ. Sci. Biotech. 2009, 8, 219–223. [Google Scholar] [CrossRef]
- Soumya, P.R.; Kumar, P.; Pal, M. Paclobutrazol: A novel plant growth regulator and multi-stress ameliorant. Ind. J. Plant Physiol. 2017, 22, 267–278. [Google Scholar] [CrossRef]
- Ahmad Nazarudin, M.R.; Mohd Fauzi, R.; Tsan, F.Y. Effects of paclobutrazol on the growth and anatomy of stems and leaves of Syzygium campanulatum. J. Trop. For. Sci. 2007, 19, 86–91. [Google Scholar]
- Chorbadjian, R.A.; Herms, D.A. Effect of Plant Growth Regulator Paclobutrazol and Fertilization on Paper Birch and Austrian Pine Resistance to Folivores; Poster Presentation, Department of Entomology, The Ohio State University: Wooster, OH, USA, 2006; Available online: http://hdl.handle.net/1811/6175 (accessed on 18 April 2006).
- Tanis, S.R.; Mccullough, D.G.; Cregg, B.M. Effects of paclobutrazol and fertilizer on the physiology, growth and biomass allocation of three Fraxinus species. Urban For. Urban Green. 2015, 14, 590–598. [Google Scholar] [CrossRef]
- Abod, S.A.; Aminor, A. Effects of paclobutrazol on the growth of seedlings of two dipterocarp species. J. Trop. For. Sci. 2000, 12, 503–508. [Google Scholar]
- Williams, D.R.; Ross, J.J.; Reid, J.B.; Potts, B.M. Response of Eucalyptus nitens seedlings to gibberellin biosynthesis inhibitors. Plant Growth Regul. 1999, 27, 125–129. [Google Scholar] [CrossRef]
- Schott, K.M.; Pinno, B.D.; Landhäusser, S.M. Premature shoot growth termination allows nutrient loading of seedlings with an indeterminate growth strategy. New For. 2013, 44, 635–647. [Google Scholar] [CrossRef]
- Monge, E.; Aguirre, R.; Blanco, A. Application of paclobutrazol and GA3 to adult peach trees: Effects on nutritional status and photosynthetic pigments. J. Plant Growth Regul. 1994, 13, 15–19. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.; Liu, H.; Hu, P.; Jia, Y.; Zhang, C.; Wang, Y.; Gu, S.; Yang, C.; Wang, C. Exogenous GA3 application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in Betula platyphylla. Int. J. Mol. Sci. 2015, 16, 22960–22975. [Google Scholar] [CrossRef]
- Teto, A.A.; Laubscher, C.P.; Ndakidemi, P.A.; Matimati, I. Paclobutrazaol retards vegetative growth in hydroponically-cultured Leonotis leonurus (L.) R. Br. Lamiaceae for a multipurpose flowering potted plant. S. Afr. J. Bot. 2016, 106, 67–70. [Google Scholar] [CrossRef]
- Wang, L.Y.; Liu, X.J.; Xu, D.P.; Yang, Z.J.; Zhang, N.N.; Hong, Z.; Zhong, W.B.; Yan, Y.Q. Effects of plant growth regulars on vegetative and reproductive growth of Dalbergia odorifera. J. South Chin. Agr. Univ. 2017, 38, 86–90. [Google Scholar]
- Misra, M. Application of gibbereilin to Pogostemon cablin plants: Growth, photosynthetic pigment content and oil yield. Biol. Plant. 1995, 37, 635–639. [Google Scholar] [CrossRef]
- Little, C.H.A.; Macdonald, J.E. Effects of exogenous gibberellin and auxin on shoot elongation and vegetative bud development in seedlings of Pinus sylvestris and Picea glauca. Tree Physiol. 2003, 23, 73–83. [Google Scholar] [CrossRef]
- Chen, L.; Jia, H.Y.; Zeng, J.; Dell, B. Growth and nutrient efficiency of Betula alnoides clones in response to phosphorus supply. Ann. For. Res. 2016, 59, 199–207. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, J.; Xu, D.; Zhao, Z.; Guo, J. Macronutrient deficiency symptoms in Betula alnoides seedlings. J. Trop. For. Sci. 2010, 22, 403–413. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Ghosh, A.; Chikara, J.; Chaudhary, D.R.; Prakash, A.R.; Boricha, G.; Zala, A. Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas. J. Plant Growth Regul. 2010, 29, 307–315. [Google Scholar] [CrossRef]
- Koukourikou-Petridou, M.A. Paclobutrazol affects the extension growth and the levels of endogenous IAA of almond seedlings. Plant Growth Regul. 1996, 18, 187–190. [Google Scholar] [CrossRef]
- Sipioni, M.S.; Júnior, J.L.F.; Dias, P.H.R.; Steiner, F. Paclobutrazol and cattle manure use improves the quality of pepper seedlings. Sci. Agrar. Parana. 2016, 15, 332–337. [Google Scholar] [CrossRef]
- Moreno, D.; Berli, F.J.; Piccoli, P.N.; Bottini, R. Gibberellins and abscisic acid promote carbon allocation in roots and berries of grapevines. J. Plant Growth Regul. 2010, 30, 220–228. [Google Scholar] [CrossRef]
- Cohen, Y.; Aloni, D.D.; Adur, U.; Hazon, H.; Klein, J.D. Characterization of growth-retardant effects on vegetative growth of date palm seedlings. J. Plant Growth Regul. 2013, 32, 533–541. [Google Scholar] [CrossRef]
- Sharma, D.K.; Dubey, A.K.; Srivastav, M.; Singh, A.K.; Sairam, R.K.; Pandey, R.N.; Dahuja, A.; Kaur, C. Effect of putrescine and paclobutrazol on growth, physiochemical parameters, and nutrient acquisition of salt-sensitive citrus rootstock Karna khatta (Citrus karna Raf.) under NaCl stress. J. Plant Growth Regul. 2011, 30, 301–311. [Google Scholar] [CrossRef]
- Rahman, M.N.H.A.; Shaharuddin, N.A.; Wahab, N.A.; Wahab, P.E.M.; Abdullah, M.O.; Abdullah, N.A.P.; Parveez, G.K.A.; Roberts, J.A.; Ramli, Z. Impact of paclobutrazol on the growth and development of nursery grown clonal oil palm (Elaeis guineensis Jacq.). J. Oil Palm Res. 2016, 28, 404–414. [Google Scholar]
- Jaleel, C.A.; Manivannan, P.; Sankar, B.; Kishorekumar, A.; Sankari, S.; Panneerselvam, R. Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochem. 2007, 42, 1566–1570. [Google Scholar] [CrossRef]
- Percival, G.C.; AlBalushi, A.M.S. Paclobutrazol-induced drought tolerance in containerized English and evergreen oak. Urban For. Urban Green. 2007, 14, 590–598. [Google Scholar]
- Rebers, M.; Romeijn, G.; Knegt, E.; van der Plas, L.H.W. Effects of exogenous gibberellins and paclobutrazol on floral stalk growth of tulip sprouts isolated from cooled and non-cooledtulip bulbs. Physiol. Plant. 1994, 92, 661–667. [Google Scholar] [CrossRef]
Codes | PBZ Treatments (mg·seedling−1) | Chla (mg·L−1) | Chlb (mg·L−1) | Chl (mg·L−1) | Chla/Chlb | Carotenoids | Car/Chl |
---|---|---|---|---|---|---|---|
P1 | 0 | 0.86 ± 0.04 b | 0.58 ± 0.03 b | 1.46 ± 0.07 b | 1.49 ± 0.03 | 4.74 ± 0.24 | 3.28 ± 0.24 |
P2 | 2 | 0.96 ± 0.05 ab | 0.71 ± 0.05 ab | 1.68 ± 0.10 ab | 1.35 ± 0.04 | 6.35 ± 0.44 | 3.79 ± 0.19 |
P3 | 6 | 0.91 ± 0.05 ab | 0.67 ± 0.05 ab | 1.59 ± 0.10 ab | 1.38 ± 0.04 | 5.78 ± 0.55 | 3.66 ± 0.34 |
P4 | 10 | 1.10 ± 0.09 ab | 0.87 ± 0.09 a | 1.99 ± 0.17 ab | 1.31 ± 0.08 | 6.23 ± 0.71 | 3.21 ± 0.48 |
P5 | 20 | 1.17 ± 0.09 a | 0.89 ± 0.08 a | 2.08 ± 0.17 a | 1.33 ± 0.03 | 6.19 ± 0.06 | 3.04 ± 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Shen, W.; Guo, J.; Wang, C.; Zhao, Z. Regulating Growth of Betula alnoides Buch. Ham. ex D. Don Seedlings with Combined Application of Paclobutrazol and Gibberellin. Forests 2019, 10, 378. https://doi.org/10.3390/f10050378
Wang H, Shen W, Guo J, Wang C, Zhao Z. Regulating Growth of Betula alnoides Buch. Ham. ex D. Don Seedlings with Combined Application of Paclobutrazol and Gibberellin. Forests. 2019; 10(5):378. https://doi.org/10.3390/f10050378
Chicago/Turabian StyleWang, Huan, Wei Shen, Junjie Guo, Chunsheng Wang, and Zhigang Zhao. 2019. "Regulating Growth of Betula alnoides Buch. Ham. ex D. Don Seedlings with Combined Application of Paclobutrazol and Gibberellin" Forests 10, no. 5: 378. https://doi.org/10.3390/f10050378
APA StyleWang, H., Shen, W., Guo, J., Wang, C., & Zhao, Z. (2019). Regulating Growth of Betula alnoides Buch. Ham. ex D. Don Seedlings with Combined Application of Paclobutrazol and Gibberellin. Forests, 10(5), 378. https://doi.org/10.3390/f10050378