The Influence of Scots Pine Log Type (Pinus sylvestris L.) on the Mechanical Properties of Lumber
Abstract
:1. Introduction
2. Experimental Details
2.1. Material
2.2. Methods
Destructive Tests of Timber
- determination of the global modulus of elasticity for timber in static bending (MOE),
- determination of static bending strength (MOR),
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Global Forest Products Facts and Figures. 2018. Available online: http://www.fao.org/3/ca7415en/ca7415en.pdf (accessed on 4 November 2020).
- Savidge, R.A. Tree growth and wood quality. In Wood Quality and Its Biological Basis; Barnett, J.R., Jeronimidis, G., Eds.; Blackwell Publishing & CRC Press: Oxford, UK, 2003; pp. 1–29. [Google Scholar]
- Schweingruber, F.H. Wood Structure and Environment; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9783540482994. [Google Scholar]
- Mederski, P.S.; Bembenek, M.; Karaszewski, Z.; Giefing, D.F.; Sulima-Olejniczak, E.; Rosińska, M.; Lacka, A. Density and mechanical properties of Scots pine (Pinus sylvestris L.) wood from a seedling seed orchard. Doniesienia Komun. 2015, 58, 117–124. [Google Scholar] [CrossRef]
- Rocha, M.F.V.; Veiga, T.R.L.A.; Soares, B.C.D.; Araújo, A.C.C.D.; Carvalho, A.M.M.; Hein, P.R.G. Do the growing conditions of trees influence the wood properties? Floresta e Ambiente 2019, 26. [Google Scholar] [CrossRef]
- Eriksson, L.O.; Gustavsson, L.; Hänninen, R.; Kallio, M.; Lyhykäinen, H.; Pingoud, K.; Pohjola, J.; Sathre, R.; Solberg, B.; Svanaes, J.; et al. Climate change mitigation through increased wood use in the European construction sector—Towards an integrated modelling framework. Eur. J. For. Res. 2012, 131, 131–144. [Google Scholar] [CrossRef]
- Canadell, J.G.; Schulze, E.D. Global potential of biosphericcarbon management for climate mitigation. Nat. Commun. 2014, 5, 5282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glos, P.; Henrici, D.; Lederer, B. Verbesserung der Wettbewerbsfähigkeit der Sägeindustrie Durch Erhöhung der Schnittholzqualität [Improvement of Competitiveness Sawmill Industry via Enhancement of Timber Quality] (Report No. 96507); Wood Research Munich: Munich, Germany, 1999. [Google Scholar]
- DIN 4074-1:2012 Sortierung von Holz nach der Tragfähigkeit-Teil 1: Nadelschnittholz; Bund Deutscher Zimmermeister im ZDB: Berlin, Germany, 2012.
- Teischinger, A.; Patzelt, M. XXL-Wood. Materialkenngrößen als Grundlage für innovative Verarbeitungstechnologien und Produkte zur wirtschaftlichen nachhaltigen Nutzung der Österreichischen Nadelstarkholzreserven. In Berichte aus Energie- und Umweltforschung 27/2006 (Material Properties as the Basis for Innovative Products and Technologies for the Rational Use of Austrian Reserves of Large-Diameter Softwoods); Universität für Bodenkultur Wien: Wien, Austria, 2006. [Google Scholar]
- Kraler, A.; Maderebner, R. Gebirgsholz–Wald Ohne Grenzen; deutliche Verbesserung des Marktwertes Süd-Ost-& Nordtiroler Gebirgshölzer Und Ausgewählter Holznischenprodukte [Wood from the Mountains-Forest without Borders; Marked Improvement in the Market Value of Wood from South, East and North Tyrol and Selected Niche Wood Products.]; Institut für Konstruktion und Materialwissenschaften Arbeitsbereich Holzbau, Leopold Franzens Universität Innsbruck: Austria, Innsbruck, 2012. [Google Scholar]
- EN 338: 2016 Timber Structures-Strength Classes; European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- Steffenrem, A.; Saranpää, P.; Lundqvist, S.; Skrøppa, T. Variation in wood properties among five full-sib families of Norway spruce (Picea abies). Ann. For. Sci. 2007, 64, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Zobel, B.J.P. Wood Variation: Its Causes and Control; Springer: Berlin, Germany, 1989. [Google Scholar]
- Kollmann, F.F.P.; Côté, W.A., Jr. Principles of Wood Science and Technology: I. Solid Wood; Springer: Berlin, Germany, 1968. [Google Scholar]
- Jelonek, T.; Pazdrowski, W.; Arasimowicz-Jelonek, M.; Tomczak, A. Properties of wood of Scots pine (Pinus sylvestris L.) growing on former farmlands. Sylwan 2010, 154, 299–311. [Google Scholar]
- Zeidler, A.; Boruvka, V.; Schönfelder, O. Comparison of Wood Quality of Douglas Fir and Spruce from Afforested Agricultural Land and Permanent Forest Land in the Czech Republic. Forests 2018, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Stöd, R.; Verkasalo, E.; Heinonen, J. Quality and bending properties of sawn timber from commercial thinnings of scots pine (Pinus sylvestris L.). Balt. For. 2016, 22, 148–162. [Google Scholar]
- Stöd, R.; Kilpeläinen, H.; Wall, T. Yield and technical quality of Scots pine saw timber from thinnings on drained peatlands and mineral soils in Finland. Balt. For. 2006, 12, 170–183. [Google Scholar]
- Duchesne, I. Effect of rotation age on lumber grade yield, bending strength and stiffness in Jack pine (Pinus banksiana L.) natural stands. Wood Fiber Sci. 2006, 38, 84–94. [Google Scholar]
- Zhang, S.Y.; Chauret, G.; Swift, E.; Duchesne, I. Effects of precommercial thinning on tree growth and lumber quality in a jack pine stand in New Brunswick, Canada. Can. J. For. Res. 2006, 36, 945–952. [Google Scholar] [CrossRef]
- Johansson, M.; Kliger, R. Variability in strength and stiffness of structural Norway spruce timber: Influence of raw material parameters. In Proceedings of the World Conference on Timber Engineering; Barrett, J.D., Ed.; WCTE: Whistler, BC, Canada, 2000; Volume 9. [Google Scholar]
- Haartveit, E.Y.; Flæte, P.O. Mechanical properties of Norway spruce lumber from monocultures and mixed stands–modelling bending stiffness and strength using stand and tree characteristics. In Proceedings of the Fourth Workshop Connection between Forest Resources and Wood Quality: Modelling Approaches and Simulation Software, Harrison Hot Springs, BC, Canada, 8–15 September 2002; Nepveu, G., Ed.; INRA: Nacy, France, 2002; pp. 01–04. [Google Scholar]
- Hanhijärvi, A.; Ranta-Maunus, A.; Turk, G. Potential of Strength Grading of Timber with Combined Measurement Techniques (Report of the Combigrade–Project Phase 1); VTT Publications: Espoo, Finland, 2005. [Google Scholar]
- Ranta-Maunus, A.; Denzler, J.; Stapel, P. Strength of European Timber. Properties of Spruce and Pine Tested in Gradewood Project (Report of the Combigrade–Project Phase 2); VTT Publications: Espoo, Finland, 2011. [Google Scholar]
- EN 408 +A1 (2012) Timber structures. Structural Timber and Glued Laminated Timber. Determination of some Physical and Mechanical Properties; European Committee for Standardization (CEN): Brussels, Belgium, 2012. [Google Scholar]
- Glos, P.; Schleifer, A. Maschinelle Festigkeitssortierung von Kiefernschnittholz [Mechanical strength grading of pine lumber]. In Report No. 01515; Wood Research Munich: Munich, Germany, 2002. [Google Scholar]
- Glos, P.; Diebold, R.; Schleifer, A. Höherwertige Nutzung von Bauholz aus einheimischen Laub- und Nadelhölzern durch maschinelle Sortierverfahren. In Report No. 98511; Wood Research Munich: Munich, Germany, 2000. [Google Scholar]
- Mirski, R.; Dziurka, D.; Chuda-Kowalska, M.; Wieruszewski, M.; Kawalerczyk, J.; Trociński, A. The Usefulness of Pine Timber (Pinus sylvestris L.) for the Production of Structural Elements. Part I: Evaluation of the Quality of the Pine Timber in the bending Test. Materials 2020, 13, 3957. [Google Scholar] [CrossRef] [PubMed]
- Jelonek, T.; Pazdrowski, W.; Tomczak, A.; Grzywiński, W. Biomechanical stability of pines growing on former farmland in northern Poland. Wood Res. 2012, 57, 31–44. [Google Scholar]
- Pikk, J.; Kask, R. Mechanical properties of juvenile wood of Scot pine (Pinus sylvestris L.) on Myrtillus forest site type. Balt. For. 2004, 10, 72–78. [Google Scholar]
- Roszyk, E.; Mania, P.; Iwańska, E.; Kusiak, W.; Broda, M. Mechanical Performance of Scots Pine Wood from Northwestern Poland–A Case Study. BioResources 2020, 15, 6781–6794. [Google Scholar]
- Krzosek, S. Wytrzymałościowe Sortowanie Polskiej Sosnowej Tarcicy Konstrukcyjnej Rożnymi Metodami [Strength Grading of Polish Pine Structural Sawn Timber]; Wydawnictwo SGGW: Warsaw, Poland, 2009. [Google Scholar]
- Antony, F.; Jordan, L.; Schimleck, L.R.; Clark, A.; Souter, R.A.; Daniels, R.F. Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States. Can. J. For. Res. 2011, 41, 1522–1533. [Google Scholar] [CrossRef]
- Ranta-Maunus, A. Strength of European Timber. Part 1. Analysis of Growth Areas Based on Existing Test Results; VTT Publications: Espoo, Finland, 2009; Volume 706. [Google Scholar]
- Auty, D.; Achim, A.; Macdonald, E.; Cameron, A.D.; Gardiner, B.A. Models for Predicting Clearwood Mechanical Properties of Scots Pine. For. Sci. 2016, 62, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Sanna, H.; Kilpelainen, H.; Verkasalo, E. Factors and Models for the Bending Properties of Sawn Timber in Finland and North-Western Russia. Part II Scots Pine 2014, 20, 142–156. [Google Scholar]
Forestry Region (Inspectorate) | Climate | Soil | Share of Pine (%) | Growing Stock (m3/ha) | Other Species | Technical Quality |
---|---|---|---|---|---|---|
Silesian (Olesno) | Submontane lowlands and structural basins | Sands, peat soils, clays and silts, rendzina and loess soils | 94 | 156 | Spruce Beech | 2 * |
Greater Poland–Pomerania (Wymiarki) | Large valleys, quite moderate and warm | Post-glacial, mostly sands and clays | 87 | 136 | Oak Alder | 2 * |
Baltic (Kalisz Pomorski) | Pomeranian Lakeland | Haplic Podzols originating from weak loamy sands and loamy sands. | 69 | 159 | Beech Spruce | 3 ** |
Total | Site 1 | Site 2 | Site 3 | ||
---|---|---|---|---|---|
DEN (kg/m3) | Total | 524 (66) | 537 (64) | 533 (71) | 503 (57) |
Butt | 574 (65) | 581 (58) | 604 (58) | 537 (63) | |
Middle | 514 (55) | 533 (61) | 518 (46) | 495 (50) | |
Top | 484 (39) | 496 (41) | 476 (35) | 481 (38) | |
MOE (MPa) | Total | 11,800 (2400) | 11,900 (2500) | 12,400 (2500) | 11,000 (2000) |
Butt | 13,200 (2400) | 13,700 (2300) | 14,000 (2800) | 11,800 (2400) | |
Middle | 11,800 (1900) | 11,700 (2100) | 12,700 (1700) | 11,000 (1600) | |
Top | 10,300 (1600) | 10,400 (1800) | 10,600 (1300) | 10,100 (1600) | |
MOR (MPa) | Total | 46.1 (17.3) | 51.5 (18.8) | 47.3 (15.6) | 39.4 (15.1) |
Butt | 53.5 (19.0) | 60.1 (19.9) | 59.8 (13.1) | 40.6 (16.8) | |
Middle | 46.4 (16.1) | 52.5 (18.5) | 46.4 (13.5) | 39.8 (13.5) | |
Top | 38.3 (12.8) | 41.9 (12.9) | 35.7 (9.8) | 37.4 (14.7) |
Property | Total | Butt | Middle | Top | |
---|---|---|---|---|---|
1 | DEN/MOE | 0.77 | 0.68 | 0.72 | 0.62 |
DEN/MOR | 0.41 | 0.46 | 0.15 | 0.10 | |
MOR/MOE | 0.45 | 0.74 | −0.02 | 0.02 | |
2 | DEN/MOE | 0.69 | 0.38 | 0.80 | 0.57 |
DEN/MOR | 0.65 | 0.20 | 0.52 | 0.38 | |
MOR/MOE | 0.58 | 0.08 | 0.68 | 0.59 | |
3 | DEN/MOE | 0.65 | 0.66 | 0.53 | 0.60 |
DEN/MOR | 0.40 | 0.56 | 0.29 | 0.32 | |
MOR/MOE | 0.71 | 0.81 | 0.51 | 0.78 | |
All | DEN/MOE | 0.72 | 0.68 | 0.67 | 0.57 |
DEN/MOR | 0.52 | 0.24 | 0.33 | 0.30 | |
MOR/MOE | 0.58 | 0.74 | 0.42 | 0.32 |
Factor | |||
---|---|---|---|
b m t | Site | b m t × Site | |
DEN | 0.000000 | 0.000000 | 0.000022 |
MOE | 0.000000 | 0.000000 | 0.007224 |
MOR | 0.000000 | 0.000000 | 0.000038 |
Property | Place of Origin | Site 1 | Site 2 | Site 3 |
---|---|---|---|---|
DEN | Site 1 | 0.597144 | 0.000020 | |
Site 2 | 0.597144 | 0.000077 | ||
Site 3 | 0.000020 | 0.000077 | ||
MOE | Site 1 | 0.059792 | 0.000403 | |
Site 2 | 0.059792 | 0.000011 | ||
Site 3 | 0.000403 | 0.000011 | ||
MOR | Site 1 | 0.027728 | 0.000011 | |
Site 2 | 0.027728 | 0.000047 | ||
Site 3 | 0.000011 | 0.000047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzosek, S.; Burawska-Kupniewska, I.; Mańkowski, P. The Influence of Scots Pine Log Type (Pinus sylvestris L.) on the Mechanical Properties of Lumber. Forests 2020, 11, 1257. https://doi.org/10.3390/f11121257
Krzosek S, Burawska-Kupniewska I, Mańkowski P. The Influence of Scots Pine Log Type (Pinus sylvestris L.) on the Mechanical Properties of Lumber. Forests. 2020; 11(12):1257. https://doi.org/10.3390/f11121257
Chicago/Turabian StyleKrzosek, Sławomir, Izabela Burawska-Kupniewska, and Piotr Mańkowski. 2020. "The Influence of Scots Pine Log Type (Pinus sylvestris L.) on the Mechanical Properties of Lumber" Forests 11, no. 12: 1257. https://doi.org/10.3390/f11121257
APA StyleKrzosek, S., Burawska-Kupniewska, I., & Mańkowski, P. (2020). The Influence of Scots Pine Log Type (Pinus sylvestris L.) on the Mechanical Properties of Lumber. Forests, 11(12), 1257. https://doi.org/10.3390/f11121257