Parameters of Trucks and Loads in the Transport of Scots Pine Wood Biomass Depending on the Season and Moisture Content of the Load
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of the Parameters of Trucks and Loads of Wood Biomass
3.2. Moisture Content Characteristics of Chips and Sawdust Loads
3.3. Relationships between the Analyzed Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angus-Hankin, C.; Stokes, B.; Twaddle, A. The transportation of fuelwood from forest to facility. Biomass Bioenergy 1995, 9, 191–203. [Google Scholar] [CrossRef]
- Mahmudi, H.; Flynn, P. Rail vs truck transport of biomass. Appl. Biochem. Biotechnol. 2006, 129, 88–103. [Google Scholar] [CrossRef]
- Moskalik, T.; Gendek, A. Production of Chips from Logging Residues and Their Quality for Energy: A Review of European Literature. Forest 2015, 10, 262. [Google Scholar] [CrossRef] [Green Version]
- Goltsev, V.; Trishkin, M.; Tolonen, T. Efficiency of forest chip transportation from Russian Karelia to Finland. Work. Pap. Finn. For. Res. Inst. 2011, 189, 1–42. [Google Scholar]
- Sukhanov, Y.; Seliverstov, A.; Gerasimov, Y. Efficiency of Forest Chip Supply Systems in Northwest Russia. Adv. Mater. Res. 2013, 740, 799–804. [Google Scholar] [CrossRef]
- Gerasimov, Y.; Karjalainen, T. Energy wood resources availability and delivery cost in Northwest Russia. Scand. J. For. Res. 2013, 28, 689–700. [Google Scholar] [CrossRef]
- Wolfsmayr, U.J.; Rauch, P. The primary forest fuel supply chain: A literature review. Biomass Bioenergy 2014, 60, 203–221. [Google Scholar] [CrossRef]
- Gendek, A.; Nurek, T. Variability of energy woodchips and their economic effects. Folia For. Pol. Ser. A 2016, 58, 62–71. [Google Scholar]
- Gendek, A.; Nurek, T.; Zychowicz, W.; Moskalik, T. Effects of Intentional Reduction in Moisture Content of Forest Wood Chips during Transport on Truckload Price. BioResources 2018, 13, 4310–4322. [Google Scholar] [CrossRef] [Green Version]
- Nuutinen, Y.; Laitila, J.; Rytkönen, E. Grinding of Stumps, Logging Residues and Small Diameter Wood Using a CBI 5800 Grinder with a Truck as a Base Machine. Baltic For. 2014, 20, 176–188. [Google Scholar]
- Jensen, P.D.; Hartmann, H.; Böhm, T.; Temmerman, M.; Rabier, F.; Morsing, M. Moisture content determination in solid biofuels by dielectric and NIR reflection methods. Biomass Bioenergy 2006, 30, 935–943. [Google Scholar] [CrossRef]
- Kühmaier, M.; Erber, G.; Kanzian, C.; Holzleitner, F.; Stampfer, K. Comparison of costs of different terminal layouts for fuel wood storage. Renew. Energy 2016, 87, 544–551. [Google Scholar] [CrossRef]
- Koirala, A.; Kizhal, A.R.; Roth, B.E. Perceiving Major Problems in Forest Products Transportation by Trucks and Trailers: A Cross-sectional Survey. Eur. J. For. Eng. 2017, 3, 23–34. [Google Scholar]
- Brown, M. The Impact of Tare Weight on Transportation Efficiency in Australian Forest Operations. Harvesting and Operations Program, Research Bulletin 3. 2008. Available online: https://fgr.nz/documents/download/4740 (accessed on 8 December 2017).
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Owusu−Ababio, S.; Schmitt, R. Analysis of Data on Heavier Truck Weights. Transp. Res. Rec. J. Transp. Res. Board 2015, 2478, 82–92. [Google Scholar] [CrossRef]
- Trzciński, G.; Moskalik, T.; Wojtan, R. Total weight and axle loads of truck units in the transport of timber depending on the timber cargo. Forests 2018, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Tymendorf, Ł.; Trzciński, G. Multi-Factorial Load Analysis of Pine Sawlogs in Transport to Sawmill. Forests 2020, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, R.; Jackson, B.; Ashton, S. Biomass Transportation and Delivery. In Sustainable Forestry for Bioenergy and Bio-Based Products: Trainers Curriculum Notebook; Hubbard, W., Biles, L., Mayfield, C., Ashton, S., Eds.; Southern Forest Research Partnership Inc.: Athens, Greece, 2007; pp. 145–148. Available online: http://www.forestbioenergy.net/training-materials/training-curriculum-notebook/ (accessed on 20 November 2013).
- Sosa, A.; Acuna, M.; McDonnell, K.; Devlin, G. Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland. Appl. Energy 2015, 137, 338–351. [Google Scholar] [CrossRef] [Green Version]
- ISO 18134-2:2017 Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method. Available online: https://www.iso.org/standard/71536.html (accessed on 9 January 2021).
- BS EN 13183-1:2002 Moisture Content of a Piece of Sawn Timber. Determination by Oven Dry Method. Available online: https://www.en-standard.eu/bs-en-13183-1-2002-moisture-content-of-a-piece-of-sawn-timber-determination-by-oven-dry-method/ (accessed on 9 January 2021).
- Durate da Paz, A.M.M. Water Content Measurement in Woody Biomass: Using Dielectric Constant at Radio Frequencies. Mälardalen University Press Licentiate Theses No. 90. School of Sustainable Development of Society and Technology. 2008. Available online: http://www.diva-portal.org/smash/get/diva2:167/FULLTEXT01.pdf (accessed on 9 January 2021).
- Hultnäs, M.; Fernandez-Cano, V. Determination of the moisture content in wood chips of Scots pine and Norway spruce using Mantex Desktop Scanner based on dual energy X-ray absorptiometry. J. Wood Sci. 2012, 58, 309–314. [Google Scholar] [CrossRef]
- Routa, J.; Kolström, M.; Ruotsalainen, J.; Sikanen, L. Validation of prediction models for estimating the moisture content of logging residues during storage. Biomass Bioenergy 2016, 94, 85–93. [Google Scholar] [CrossRef]
- Sosa, A.; Acuna, M.; McDonnell, K.; Devlin, G. Managing the moisture content of wood biomass for the optimization of Ireland’s transport supply strategy to bioenergy markets and competing industries. Energy 2015, 86, 354–368. [Google Scholar] [CrossRef]
- Erber, G.; Kanzian, C.; Stampfer, K. Modelling natural drying of European beech (Fagus sylvatica L.) logs for energy based on meteorological data. Scand. J. For. Res. 2016, 31, 294–301. [Google Scholar] [CrossRef]
- Lukason, O.; Ukrainski, K.; Varblane, U. Economic benefit of maximum truck weight regulation change for Estonian forest sektor. Veokite täismassi regulatsiooni muutmise majanduslikud mõjud eesti metsatööstuse sektorile. Est. Discuss. Econ. Policy 2011, 19. [Google Scholar] [CrossRef]
- Permissible Maximum Weights in Europe. OECD International Transport Forum. 2010. Available online: http://www.internationaltransportforum.org/europe/road/pdf/weights.pdf (accessed on 8 December 2020).
- Wilson, S. Permissible Maximum Weights of Lorries in Europe. Available online: https://www.itf-oecd.org/permissible-maximum-weights-lorries-europe (accessed on 26 January 2018).
- FinLex 4.12.1992/1257. Asetus Ajoneuvon Käytöstä Tiellä. Available online: http://www.finlex.fi/fi/laki/ajantasa/1992/19921257 (accessed on 8 December 2020).
- Liimatainen, H.; Nykänen, L. Impacts of Increasing Maximum Truck Weight—Case Finland; Transport Research Centre Verne, Tampere University of Technology: Tampere, Finland, 2017; Available online: http://www.tut.fi/verne/aineisto/LiimatainenNyk%C3%A4nen.pdf (accessed on 10 January 2021).
- Palander, T.; Kärhä, K. Potential traffic levels after increasing the maximum vehicle weight in environmentally efficient transportation system: The Case of Finland. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 417–429. [Google Scholar] [CrossRef]
- Sosa, A.; Klvac, R.; Coates, E.; Kent, T.; Devlin, G. Improving Log Loading Efficiency for Improved Sustainable Transport within the Irish Forest and Biomass Sectors. Sustainability 2015, 7, 3017–3030. [Google Scholar] [CrossRef] [Green Version]
- Hamsley, A.; Greene, W.G.; Siry, J.; Mendell, B. Improving timber trucking performance by reducing variability of log truck weights. South. J. Appl. For. 2007, 31, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Kühmaier, M.; Erber, G. Research trends in European forest fuel supply chains: A review of the last ten years (2007–2016)—part two: Comminution, transport & logistics. Croat. J. For. Eng. 2018, 39, 139–152. [Google Scholar]
- FAO; ITTO and United Nations. Forest Product Conversion Factors; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Francescato, V.; Antonini, E.; Beromi, L.Z.; Metschina, C.; Chamber, S.; Schnedl, C.; Krajnc, N.; Gradziuk, P.; Koscik, K.; Nocentini, G.; et al. Wood Fuels Handbook. Production, Quality requirements, Tradin. Biomass Trade Cetres. 2008. Available online: http://www.biomasstradecentre2.eu/available-literature/ (accessed on 10 January 2021).
- Acuna, M.; Mirowski, L.; Ghaffariyan, M.R.; Brown, M. Optimizing transport efficiency and costs in Australian wood chipping operations. Biomass Bioenergy 2012, 46, 291–300. [Google Scholar]
- Tymendorf, Ł.; Trzciński, G. Duration of stages of delivery of large−sized Scots pine wood to the sawmill. Sylwan 2020, 164, 549–559. [Google Scholar]
- Trzciński, G.; Tymendorf, Ł. Transport Work for the Supply of Pine Sawlogs to the Sawmill. Forests 2020, 11, 1340. [Google Scholar] [CrossRef]
- Beardsell, M.G. Decreasing the Cost of Hauling Timber through Increased Payload. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1986. Available online: https://vtechworks.lib.vt.edu/handle/10919/53617 (accessed on 9 September 2017).
- Johansson, J.; Liss, J.-E.; Gullberg, T.; Björheden, R. Transport and handling of forest energy bundles—advantages and problems. Biomass Bioenergy 2006, 30, 334–341. [Google Scholar] [CrossRef]
- Kozakiewicz, P. Physic of Wood in Theory and Practice; Fourth Edition-Changed; Warsaw University of Life Sciences Press: Warsaw, Poland, 2012; Available online: https://www.researchgate.net/publication/326557330_Fizyka_drewna_w_teorii_i_zadaniach_Physic_of_wood_in_theory_and_practise (accessed on 10 January 2021). (In Polish)
- Millers, M.; Magaznieks, J. Scots pine (Pinus sylvestris L.) stem wood and bark moisture and density influencing factors. Research for Rural Development. In Proceedings of the Annual 18th International Scientific Conference Proceedings, Jelgava, Latvia, 16–18 May 2012; Volume 2, pp. 91–96. Available online: https://www2.llu.lv/research_conf/Proceedings/18th_volume2.pdf (accessed on 8 December 2020).
- Laitila, J.; Routa, J. Performance of a small and a medium sized professional chippers and the impact of storage time on Scots pine (Pinus sylvestris) stem wood chips characteristics. Silva Fenn. 2015, 49, 1382. [Google Scholar] [CrossRef] [Green Version]
- Sultana, A.; Kumar, A. Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresour. Technol. 2011, 102, 9947–9956. [Google Scholar] [CrossRef]
- Trzciński, G.; Moskalik, T.; Wojtan, R.; Tymendorf, Ł. Variability of loads and gross vehicle weight in timber transportation. Sylwan 2017, 161, 1026–1034. (In Polish) [Google Scholar]
Measure | Load | Mean | SD | Min | Max | Q1 | Median | Q3 |
---|---|---|---|---|---|---|---|---|
Gross vehicle weight (Mg) | Wood chips | 39.424 | 0.396 | 38.000 | 40.050 | 39.200 | 39.425 | 39.700 |
Sawdust | 39.641 | 0.294 | 38.600 | 40.050 | 39.550 | 39.700 | 39.850 | |
Tare (Mg) | Wood chips | 16.154 | 0.604 | 14.850 | 18.250 | 15.800 | 16.100 | 16.450 |
Sawdust | 15.938 | 0.526 | 15.200 | 17.800 | 15.500 | 15.900 | 16.200 | |
Semi-trailer capacity (m3) | Wood chips | 89.527 | 4.241 | 74.860 | 95.260 | 89.720 | 90.720 | 91.664 |
Sawdust | 91.022 | 1.110 | 88.110 | 92.460 | 90.060 | 91.700 | 92.130 | |
Bulk volume of the load (bulk m3) | Wood chips | 64.783 | 3.127 | 56.266 | 74.826 | 62.776 | 64.804 | 66.945 |
Sawdust | 70.465 | 2.516 | 62.457 | 73.575 | 69.187 | 1.048 | 72.051 | |
Solid cubic meter (m3) | Wood chips | 27.209 | 1.313 | 23.632 | 31.427 | 26.366 | 27.218 | 28.117 |
Sawdust | 23.253 | 0.830 | 20.611 | 24.280 | 22.830 | 23.446 | 23.777 | |
Weight of load (Mg) | Wood chips | 23.270 | 0.685 | 21.050 | 24.750 | 22.850 | 23.345 | 23.700 |
Sawdust | 23.703 | 0.643 | 20.800 | 24.750 | 23.450 | 23.750 | 24.100 | |
Weight of 1 m3 of the load (Mg) | Wood chips | 0.856 | 0.034 | 0.770 | 0.934 | 0.826 | 0.856 | 0.883 |
Sawdust | 1.019 | 0.027 | 0.969 | 1.087 | 1.001 | 1.014 | 1.036 | |
Bulk density of the load (Mg⋅m3) | Wood chips | 0.3600 | 0.0207 | 0.3050 | 0.4265 | 0.3475 | 0.3586 | 0.3749 |
Sawdust | 0.3358 | 0.0085 | 0.3200 | 0.3556 | 0.3297 | 0.3345 | 0.3417 | |
Usage of semi-trailer capacity (%) | Wood chips | 72.585 | 5.567 | 61.817 | 92.448 | 69.228 | 71.428 | 74.339 |
Sawdust | 77.420 | 3.019 | 70.440 | 81.484 | 75.098 | 77.825 | 79.860 |
Measure Type of Load | Gross Vehicle Weight (Mg) | Tare (Mg) | Semi-Trailer Capacity (m3) | Bulk Volume of the Load (Bulk m3) | Usage of Semi-Trailer Capacity (%) | Solid Cubic Meter (m3) | Weight of Load (Mg) | Weight of 1 m3 of Load (Mg) | Bulk Density of the Load (Mg⋅m−3) |
---|---|---|---|---|---|---|---|---|---|
Wood chips | 0.0053 | 0.0285 | 0.8054 | 0.0000 | 0.0000 | 0.0000 | 0.0361 | 0.0000 | 0.0000 |
Sawdust | 0.7638 | 0.9030 | 0.5911 | 0.0035 | 0.2056 | 0.0035 | 0.6005 | 0.0478 | 0.0478 |
Type of Load | Mean | SD | Min. | Max. | Q1 | Median | Q3 |
---|---|---|---|---|---|---|---|
Wood chips | 108.5 | 10.9 | 86.1 | 138.9 | 100.4 | 107.0 | 115.5 |
Sawdust | 86.3 | 12.6 | 63.3 | 116.0 | 78.3 | 84.1 | 92.2 |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | r2 Coefficient of Determination | Standard Error of Estimation |
---|---|---|---|---|---|---|
Constant term | −21.9928 | 0.516796 | −42.5521 | 0.0000 | 0.9862 | 0.04684 |
Tare (T) | 0.9716 | 0.009850 | 98.6462 | 0.0000 | ||
Bulk volume m3(Bv) | 0.3527 | 0.003095 | 113.9627 | 0.0000 | ||
Bulk density Mg⋅m−3 (Bd) | 63.5796 | 0.529833 | 119.9994 | 0.0000 |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | r2 Coefficient of Determination | Standard Error of Estimation |
---|---|---|---|---|---|---|
Constant term | −22.8719 | 0.906769 | −25.2236 | 0.0000 | 0.9927 | 0.02603 |
Tare | 0.9895 | 0.017680 | 55.9639 | 0.0000 | ||
Bulk volume m3 | 0.3341 | 0.004897 | 68.2297 | 0.0000 | ||
Bulk density Mg⋅m−3 | 68.9311 | 0.964805 | 71.4456 | 0.0000 |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | r-Coefficient of Determination |
---|---|---|---|---|---|
Tare (T) | 0.970076 | 0.029073 | 33.36740 | 0.000 | 0.9349 |
Bulk density Mg⋅m−3 (Bd) | 1.045960 | 0.020183 | 51.82264 | 0.000 |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | r-Coefficient of Determination |
---|---|---|---|---|---|
Tare | 1.062124 | 0.048359 | 21.96310 | 0.000 | 0.9392 |
Bulk density Mg⋅m−3 | 0.973537 | 0.032528 | 29.92936 | 0.000 |
Measure | Bulk Volume of the Load (Bulk m3) | Usage of Semi-Trailers Capacities (%) | Weight of Load (Mg) | Bulk Density of the Load (Mg⋅m−3) | Absolute Moisture Content of Load (%) |
---|---|---|---|---|---|
Bulk volume of the load (bulk m3) | x | 0.8008 0.7829 | 0.6479 - | −0.5284 −0.7748 | −0.5038 −0.9009 |
Usage of semi-trailers capacities (%) | 0.7819 0.8004 | x | 0.5112 - | −0.4079 - | - - |
Weight of load (Mg) | 0.6479 - | 0.5112 - | x | - - | - - |
Bulk density of the load (Mg⋅m−3) | −0.5284 −0.7748 | −0.4079 - | - - | x | 0.5015 0.8214 |
Absolute moisture content of load (%) | −0.5038 −0.9009 | - - | - - | 0.5015 0.8214 | x |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | r2-Coefficient of Determination |
---|---|---|---|---|---|
Constant term | 0.269488 | 0.022933 | 11.7511 | 0.0000 | 0.2968 |
Absolute moisture content of load | 0.000743 | 0.000220 | 3.37616 | 0.002243 |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | r2-Coefficient of Determination |
---|---|---|---|---|---|
Constant term | 0.191677 | 0.046166 | 4.1519 | 0.008893 | 0.63999 |
Absolute moisture content of load | 0.001485 | 0.000498 | 2.9814 | 0.030751 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzciński, G.; Tymendorf, Ł.; Kozakiewicz, P. Parameters of Trucks and Loads in the Transport of Scots Pine Wood Biomass Depending on the Season and Moisture Content of the Load. Forests 2021, 12, 223. https://doi.org/10.3390/f12020223
Trzciński G, Tymendorf Ł, Kozakiewicz P. Parameters of Trucks and Loads in the Transport of Scots Pine Wood Biomass Depending on the Season and Moisture Content of the Load. Forests. 2021; 12(2):223. https://doi.org/10.3390/f12020223
Chicago/Turabian StyleTrzciński, Grzegorz, Łukasz Tymendorf, and Paweł Kozakiewicz. 2021. "Parameters of Trucks and Loads in the Transport of Scots Pine Wood Biomass Depending on the Season and Moisture Content of the Load" Forests 12, no. 2: 223. https://doi.org/10.3390/f12020223
APA StyleTrzciński, G., Tymendorf, Ł., & Kozakiewicz, P. (2021). Parameters of Trucks and Loads in the Transport of Scots Pine Wood Biomass Depending on the Season and Moisture Content of the Load. Forests, 12(2), 223. https://doi.org/10.3390/f12020223