Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biomasses Characterization
2.3. Torrefaction Process
2.4. Briquette Production
2.5. Physical and Mechanical Briquette Properties
- HHV: higher calorific value, dry basis, (kcal/kg);
- LHV: lower calorific value, dry basis, (kcal/kg);
- UHV: useful calorific value, wet basis, (kcal/kg);
- U: humidity of the sample on the wet basis (%);
- H: hydrogen content considered as 5.99% for the in natura material, and 2.99% for the torrefied one.
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Bioenergy Project Development and Biomass Supply; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Maroušek, J. Economically oriented process optimization in waste management. Environ. Sci. Pollut. Res. 2014, 21, 7400–7402. [Google Scholar] [CrossRef] [PubMed]
- Maroušek, J.; Zeman, R.; Vaníčková, R.; Hašková, S. New concept of urban green management. Clean Technol. Environ. Policy 2014, 16, 1835–1838. [Google Scholar] [CrossRef]
- Protásio, T.P.; Alves, I.C.N.; Trugilho, P.F.; Silva, V.O.; Baliza, A.E.R. Compactação de biomassa vegetal visando à produção de biocombustíveis sólidos. Pesqui. Florest. Bras. 2011, 31, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, G.F.; Rendeiro, G.; Pinho, J.T. Densidade energética de resíduos vegetais. Biomassa Energ. 2005, 2, 113–123. [Google Scholar]
- Röder, M.; Thornley, P. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK. Waste Manag. 2018, 74, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Dufourny, A.; Van De Steene, L.; Humbert, G.; Guibal, D.; Martin, L.; Blin, J. Influence of pyrolysis conditions and the nature of the wood on the quality of charcoal as a reducing agent. J. Anal. Appl. Pyrolysis 2019, 137, 1–13. [Google Scholar] [CrossRef]
- He, C.; Tang, C.Y.; Li, C.H.; Yuan, J.H.; Tran, K.Q.; Bach, Q.V.; Qiu, R.L.; Yang, Y.H. Wet torrefaction of biomass for high quality solid fuel production: A review. Renew. Sustain. Energy Rev. 2018, 91, 259–271. [Google Scholar] [CrossRef]
- Silva, C.M.S.; Carneiro, A.C.O.; Vital, B.R.; Figueiró, C.G.; Fialho, L.F.; Magalhães, M.A.; Carvalho, A.G.; Cândido, W.L. Biomass torrefaction for energy purposes—Definitions and an overview of challenges and opportunities in Brazil. Renew. Sustain. Energy Rev. 2018, 82, 2426–2432. [Google Scholar] [CrossRef]
- Wang, L.; Barta-Rajnai, E.; Skreiberg, Ø.; Khalil, R.; Czégény, Z.; Jakab, E.; Grønli, M. Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark. Appl. Energy 2017, 227, 137–148. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, Z.; Fu, K.; Zeng, Z.; Wang, J.; Lu, M. Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel 2015, 159, 27–32. [Google Scholar] [CrossRef]
- Whittaker, C.; Shield, I. Factors affecting wood, energy grass and straw pellet durability—A review. Renew. Sustain. Energy Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Boschetti, W.T.N.; Carvalho, A.M.M.L.; Carneiro, A.C.O.; Santos, L.C.; Poyares, L.B.Q. Potential of kraft lignin as an additive in briquette production. Nord. Pulp Paper Res. J. 2019, 34, 147–152. [Google Scholar] [CrossRef]
- Araújo, S.; Boas, M.A.V.; Neiva, D.M.; Carneiro, A.C.; Vital, B.; Breguez, M.; Pereira, H. Effect of a mild torrefaction for production of eucalypt wood briquettes under different compression pressures. Biomass Bioenergy 2016, 90, 181–186. [Google Scholar] [CrossRef]
- Mardoyan, A.; Braun, P. Analysis of Czech subsidies for solid biofuels. Int. J. Green Energy 2014, 12, 405–408. [Google Scholar] [CrossRef]
- Van Der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.L. A review of biomass densification system to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefin. 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Peng, J.H.; Bi, X.T.; Sokhansanj, S.; Lim, C.J. Torrefaction and densification of different species of softwood residues. Fuel 2013, 111, 411–421. [Google Scholar] [CrossRef]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef]
- Bergman, P.C.A.; Boersma, A.R.; Kiel, J.H.A.; Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. Torrefaction for entrained-flow gasification of biomass. ECN Biomass 2005, 67, 1–50. [Google Scholar]
- Nhuchhen, D.R.; Basu, P.; Acharya, B.A. Comprehensive review on biomass torrefaction. Int. J. Renew. Energy Biofuels 2014, 2014, 1–56. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Atreya, A.; Olszewski, P.; Chen, Y.; Baum, H.R. The effect of size, shape and pyrolysis conditions on the thermal decomposition of wood particles and firebrands. Int. J. Heat Mass Transf. 2017, 107, 319–328. [Google Scholar] [CrossRef]
- Shang, L.; Ahrenfeldt, J.; Holm, J.K.; Bach, L.S.; Stelte, W.; Henriksen, U.B. Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactor. J. Anal. Appl. Pyrolysis 2014, 108, 109–116. [Google Scholar] [CrossRef]
- Vochozka, M.; Maroušková, A.; Váchal, J.; Straková, J. Reengineering the paper mill waste management. Clean Technol. Environ. Policy 2015, 18, 323–329. [Google Scholar] [CrossRef]
- Associação Brasileira de Normas Técnicas (ABNT). NBR 8112: Carvão Vegetal—Análise Imediata; Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 1983. [Google Scholar]
- Associação Brasileira de Normas Técnicas (ABNT). NBR 8633: Carvão Vegetal—Determinação do Poder Calorífico; Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 1984. [Google Scholar]
- Deutsches Institut Für Normung (DIN). DIN EN 14775 Determination of Ash Content; Deutsches Institut Für Normung (DIN): Berlin, Germany, 2012. [Google Scholar]
- Deutsches Institut Für Normung (DIN). DIN EN 15148 Solid Biofuels—Determination of the Content of Volatile Matter; Deutsches Institut Für Normung (DIN): Berlin, Germany, 2010. [Google Scholar]
- Deutsches Institut Für Normung (DIN). DIN EN 14918 Determination of Calorific Value; Deutsches Institut Für Normung (DIN): Berlin, Germany, 2010. [Google Scholar]
- Associação Brasileira de Normas Técnicas (ABNT). NBR 9484: Compensado—Determinação do Teor de Umidade; Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 1986. [Google Scholar]
- Associação Brasileira de Normas Técnicas (ABNT). NBR 11941: Madeira—Determinação da Densidade Básica; Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Statsoft Inc. Statistica Data Analysis System Version 8.0; Statsoft Inc.: Tulsa, Oklahoma, 2007. [Google Scholar]
- Mckendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresourc. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Mészáros, E.; Jakab, E.; Várhegyi, G. TG/MS, Py-GC/ MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia. J. Anal. Appl. Pyrolysis 2007, 79, 61–70. [Google Scholar] [CrossRef]
- Park, J.; Meng, J.J.; Lim, K.H.; Rojas, O.J.; Park, S. Transformation of lignocellulosic biomass during torrefaction. J. Anal. Appl. Pyrolysis 2013, 100, 199–206. [Google Scholar] [CrossRef]
- Pereira, B.L.C.; Carneiro, A.C.O.; Carvalho, A.M.M.L.; Colodette, J.L.; Oliveira, A.C. Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. BioResources 2013, 8, 4574–4592. [Google Scholar] [CrossRef]
- Almeida, G.; Brito, J.O.; Pedro, P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresour. Technol. 2010, 101, 9778–9784. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Bank, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Maroušek, J.; Vochozka, M.; Plachy, J.; Zak, J. Glory and misery of biochar. Clean Technol. Environ. Policy 2017, 19, 311–317. [Google Scholar] [CrossRef]
- Maroušek, J.; Strunecký, O.; Stehel, V. Biochar farming: Defining economically perspective applications. Clean Technol. Environ. Policy 2019, 21, 1389–1395. [Google Scholar] [CrossRef]
- Xu, Q.; Ji, T.; Gao, S.J.; Yang, Z.; Wu, N. Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials 2019, 12, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jara, A.A.; Razal, R.A.; Migo, V.P.; Acda, M.N.; Calderon, M.M.; Florece, L.M. Chemical composition of Bambusa vulgaris shoots as influenced by harvesting time and height. Philipp. J. Crop Sci. 2018, 43, 1–9. [Google Scholar]
- Garcia, D.P.; Caraschi, J.C.; Ventorim, G.; Vieira, F.H.A.; Protásio, T.P. Comparative energy properties of torrefied pellets in relation to pine and elephant grass pellets. BioResources 2018, 13, 2898–2906. [Google Scholar] [CrossRef] [Green Version]
- Zerbinatti, O.E. Briquetagem de resíduos de cafeeiro conduzido no sistema safra zero. Ciênc. Agrár. 2014, 35, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
- Bach, Q.; Skreiberg, Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 2016, 54, 665–677. [Google Scholar] [CrossRef]
- de Castro, V.R.; de Castro Freitas, M.P.; Zanuncio, A.J.V.; Zanuncio, J.C.; Surdi, P.G.; Carneiro, A.D.C.O.; Vital, B.R. Resistance of in natura and torrefied wood chips to xylophage fungi. Sci. Rep. 2019, 9, 11068. [Google Scholar] [CrossRef]
- Silva, R.T.; Sette Junior, C.R.; Ferreira, A.; Chagas, M.P.; Tomazello Filho, M. Wood and briquette density under the effect of fertilizers and water regimes. Floresta Ambiente 2019, 26, e20160471. [Google Scholar] [CrossRef]
- Li, Y.; Cui, D.; Tong, Y.; Xu, L. Study on structure and thermal stability properties of lignin during thermostabilization and carbonization. Int. J. Biol. Macromol. 2013, 62, 663–669. [Google Scholar] [CrossRef]
- Avelar, N.V.; Rezende, A.A.P.; Carneiro, A.C.O.; Silva, C.M. Evaluation of briquettes made from textile industry solid waste. Renew. Energy 2016, 91, 417–424. [Google Scholar] [CrossRef]
- Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 2017, 126, 380–389. [Google Scholar] [CrossRef]
- Li, M.F.; Chen, L.X.; Li, X.; Chen, C.Z.; Lai, Y.C.; Xiao, X.; Wu, Y.Y. Evaluation of the structure and fuel properties of lignocelluloses through carbon dioxide torrefaction. Energy Convers. Manag. 2016, 119, 463–472. [Google Scholar] [CrossRef]
- Özyuğuran, A.; Yaman, S. Prediction of calorific value of biomass from proximate analysis. Energy Procedia 2017, 107, 130–136. [Google Scholar] [CrossRef]
- Zhou, H.; Long, Y.; Meng, A.; Chen, S.; Li, Q.; Zhang, Y. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Adv. 2015, 5, 26509–26516. [Google Scholar] [CrossRef]
- Sotannde, O.A.; Oluyege, A.O.; Abah, G.B. Physical and combustion properties of briquettes from sawdust of Azadirachta indica. J. For. Res. 2010, 21, 63–67. [Google Scholar] [CrossRef]
- Costa, E.V.S.; Pereira, M.P.C.F.; Silva, C.M.S.; Pereira, B.L.C.; Rocha, M.F.V.; Carneiro, A.C.O. Torrefied briquettes of sugarcane bagasse and eucalyptus. Rev. Árvore 2019, 43, e430101. [Google Scholar] [CrossRef]
- Costa, T.G.; Bianchi, M.L.; Protássio, T.P.; Trugilho, P.F.; Pereira, A.J. Qualidade da madeira de cinco espécies de ocorrência no Cerrado para produção de carvão vegetal. Cerne 2014, 20, 37–46. [Google Scholar] [CrossRef] [Green Version]
Material | SC | CO | EU | PI | |
---|---|---|---|---|---|
Volatile materials (%) | In natura | 82.32 bA(0.695) | 78.07 aA(1.342) | 86.75 cA(1.272) | 86.32 cA(1.002) |
Torrified | 65.42 bB(0.193) | 65.53 bB(1.168) | 76.07 bB(1.122) | 74.65 bB(1.454) | |
Fixed carbon (%) | In natura | 12.73 bB(0.705) | 19.37 aB(1.252) | 12.93 bB(1.152) | 13.50 bB(1.037) |
Torrified | 25.75 bA(0.234) | 31.12 aA(1.203) | 23.45 bA(1.457) | 25.14 bA(1.451) | |
Ash content (%) | In natura | 4.95 aB(0.334) | 2.56 bB(0.091) | 0.32 cA(0.169) | 0.18 cA(0.015) |
Torrified | 8.83 aA(0.409) | 3.35 bA(0.240) | 0.48 aA(0.409) | 0.21 cA(0.006) | |
Calorific value (kJ kg−1) | In natura | 18,857 dB(224.9) | 19,799 cB(74.01) | 20,937 bB(216.1) | 21,556 aB(59.21) |
Torrified | 20,966 cA(5.921) | 20,560 dA(76.97) | 21,619 bA(14.14) | 22,033 aA(21.21) | |
Torrefaction yield (%) | Average | 80.41 b | 76.96 c | 87.7 a | 87.7 a |
In Natura | Torrefied | |||||
---|---|---|---|---|---|---|
BI | Compaction Pressure (MPa) | |||||
6.21 | 8.27 | 10.34 | 6.21 | 8.27 | 10.34 | |
Apparent density (g.cm−3) | ||||||
SC | 1.09 bA0.0138 | 1.15 aA0.0052 | 1.15 aA0.0218 | * 0.99 bC0.0026 | * 1.03 aC0.0127 | * 1.06 aC0.0191 |
CO | 0.94 bC(0.0161) | 0.96 bD(0.0106) | 1.04 aC(0.0262) | * 0.90 cD(0.0111) | ns 0.98 bD(0.0105) | ns 1.05 aC(0.0219) |
EU | 1.03 cB(0.0045) | 1.06 bC(0.0032) | 1.11 aB(0.0123) | * 1.05 bB(0.0105) | ns 1.07 abB(0.0106) | ns 1.09 aB(0.0221) |
PI | 1.06 bA(0.0224) | 1.09 bB(0.0075) | 1.12 aB(0.0234) | * 1.09 bA(0.0059) | * 1.12 abA(0.0193) | ns 1.14 aA(0.0062) |
Hygroscopic equilibrium moisture (%) | ||||||
SC | 8.86 aA(0.3527) | 8.71 abA(0.1650) | 8.43 bB(0.0283) | * 5.79 aA(0.0451) | * 5,67 aA(0.1320) | * 5,89 aA(0.2762) |
CO | 7.69 aB(0.0650) | 7.43 aB(0.2194) | 7.43 aC(0.5093) | * 5.22 aA(0.1159) | * 5.35 aA(0.1401) | * 5.21 aA(0.1015) |
EU | 8.81 abA(0.6451) | 9.07 aA(0.3568) | 8.48 bB(0.4234) | * 6.01 aB(0.2858) | * 6.13 aB(0.2686) | * 6.25 bB(0.0945) |
PI | 8.99 aA(0.1002) | 9.04 aA(0.1212) | 9.09 aA(0.0493) | * 6.54 aB(0.0929) | * 6.34 bB(0.1504) | * 6.66 aB(0.0100) |
Briquettes useful calorific value (MJ∙kg−1) | ||||||
SC | 15.9 aA(0.0162) | 15.9 aA(0.0089) | 15.9 aA(0.0107) | * 19.0 aA(0.0032) | * 19.1 aA(0.0031) | * 19.0 aA(0.0012) |
CO | 16.9 aB(0.0089) | 16.9 aB(0.0042) | 16.9 aB(0.0008) | * 18.8 aA(0.0016) | * 18.7 aA(0.0055) | * 18.8 aA(0.0128) |
EU | 17.8 aC(0.0011) | 17.7 aC(0.0033) | 17.8 aC(0.0069) | * 19.6 aB(0.0029) | * 19.6 aB(0.0035) | * 19.5 aB(0.0026) |
PI | 18.3 aC(0.0072) | 18.3 aD(0.0068) | 18.3 aD(0.0024) | * 19.9 aB(0.0030) | * 19.9 aB(0.0038) | * 19.8 aB(0.0003) |
Energy density (MJ∙m−3) | ||||||
SC | 18.1 bC(0.2486) | 19.9 aB(0.0912) | 19.2 aC(0.3768) | * 19.4 cC(0.0508) | * 20.2 bC(0.2594) | * 20.6 aC(0.3808) |
CO | 17.1 bD(0.2939) | 16.8 bC(0.1903) | 17.9 aD(0.4834) | * 17.3 cD(0.2189) | * 18.7 bD(0.2106) | * 20.2 aC(0.4373) |
EU | 18.7 bB(0.0707) | 19.2 bB(0.0701) | 20.5 aB(0.2406) | * 20.8 bB(0.2174) | * 21.6 bB(0.2268) | * 22.7 aB(0.4603) |
PI | 19,3 bA(0.4495) | 20.4 bA(0.1479) | 21.5 aA(0.4667) | * 22.9 bA(0.1235) | * 22.4 abA(0.4048) | * 23.2 aA(0.1307) |
Resistance to compression (N) | ||||||
SC | 758 aA(147.09) | 1032 bA(50.869) | 1245 cA(13.687) | * 694 aA(19.404) | * 934 bA(60.435) | * 1099 cA(44.176) |
CO | 1505 aC(66.112) | 1775 bC(58.639) | 2045 cC(111.58) | * 1222 aB(148.77) | * 1470 bB(57.179) | * 1672 cB(47.039) |
EU | 1077 aB(191.44) | 1300 bB(21.005) | 1417 cB(168.56) | * 1387 aC(117.58) | * 1544 bB(9.7673) | * 1704 cB(13.652) |
PI | 1699 aD(85.536) | 1894 bD(27.392) | 2282 cD(130.08) | * 1680 aD(193.26) | * 1948 bC(51.842) | * 2260 cC(51.676) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis Portilho, G.; Resende de Castro, V.; de Cássia Oliveira Carneiro, A.; Cola Zanuncio, J.; José Vinha Zanuncio, A.; Gabriella Surdi, P.; Gominho, J.; de Oliveira Araújo, S. Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy. Forests 2020, 11, 1272. https://doi.org/10.3390/f11121272
Reis Portilho G, Resende de Castro V, de Cássia Oliveira Carneiro A, Cola Zanuncio J, José Vinha Zanuncio A, Gabriella Surdi P, Gominho J, de Oliveira Araújo S. Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy. Forests. 2020; 11(12):1272. https://doi.org/10.3390/f11121272
Chicago/Turabian StyleReis Portilho, Gabriel, Vinicius Resende de Castro, Angélica de Cássia Oliveira Carneiro, José Cola Zanuncio, Antonio José Vinha Zanuncio, Paula Gabriella Surdi, Jorge Gominho, and Solange de Oliveira Araújo. 2020. "Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy" Forests 11, no. 12: 1272. https://doi.org/10.3390/f11121272
APA StyleReis Portilho, G., Resende de Castro, V., de Cássia Oliveira Carneiro, A., Cola Zanuncio, J., José Vinha Zanuncio, A., Gabriella Surdi, P., Gominho, J., & de Oliveira Araújo, S. (2020). Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy. Forests, 11(12), 1272. https://doi.org/10.3390/f11121272