Bound Water Content and Pore Size Distribution of Thermally Modified Wood Studied by NMR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. NMR Cryoporometry
2.4. Bound Water Content
3. Results
3.1. T2 Distribution at Different Experimental Temperatures
3.2. The Bound Water Content of Saturated Cell Walls
3.3. The Pore Size Distribution of Saturated Cell Walls
4. Discussion
4.1. T2 Distribution at Different Experimental Temperatures
4.2. The Bound Water Content of Saturated Cell Walls
4.3. The Pore Size Distribution of Saturated Cell Walls
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kollmann, F.; Côté, W.A. Principles of Wood Science and Technology. 1. Solid Wood; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1968. [Google Scholar]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Hill, C.A.S. Wood Modification–Chemical, Thermal and Other Processes; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Everett, D.H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface. Chem. Pure Appl. Chem. 1972, 31, 577–638. [Google Scholar] [CrossRef]
- Yin, J.; Song, K.; Lu, Y.; Zhao, G.; Yin, Y. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Sci. Technol. 2015, 49, 987–1001. [Google Scholar] [CrossRef]
- Roles, S.; Elsen, J.; Carmeliet, J.; Hens, H. Characterization of pore structure by combining mercury porosimetry and micrography. Mater. Struct. 2001, 34, 76–82. [Google Scholar] [CrossRef]
- Fahlén, J.; Salmén, L. Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 2005, 6, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Venditti, R.A.; Jameel, H.; Pawlak, J. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohyd Polym. 2006, 66, 97–103. [Google Scholar] [CrossRef]
- Zauer, M.; Pfriem, A.; Wagenführ, A. Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry. Wood Sci. Technol. 2013, 47, 1197–1211. [Google Scholar] [CrossRef]
- Zauer, M.; Kretzschmar, J.; Grossmann, L.; Pfriem, A.; Wagenfuhr, A. Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry. Wood Sci. Technol. 2014, 48, 177–193. [Google Scholar] [CrossRef]
- Peng, L.; Wang, D.; Fu, F.; Song, B. Analysis of wood pore characteristics with mercury intrusion porosimetry and X-ray micro-computed tomography. Wood Res. 2015, 60, 857–864. [Google Scholar]
- Bucur, V. Nondestructive Characterization and Imaging of Wood; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Kekkonen, P.M.; Ylisassi, A.; Telkki, V.V. Absorption of water in thermally modified pine wood as studied by NMR. J. Phys. Chem. C 2014, 118, 2146–2153. [Google Scholar] [CrossRef]
- Sharp, A.R.; Riggin, M.T.; Kaiser, R.; Schneider, M.H. Determination of Moisture Content of Wood by Pulsed Nuclear Magnetic Resonance. Wood Fiber Sci. 1978, 10, 74–81. [Google Scholar]
- Brownstein, K.R.; Tarr, C.E. Importance of classical diffusion in NMR studies of water in biological cells. Phys. Rev. A 1979, 19, 2446. [Google Scholar] [CrossRef]
- Riggin, M.T.; Sharp, A.R.; Kaiser, R. Transverse NMR Relaxation of Water in Wood. J. Appl. Polym. Sci. 1979, 23, 3147–3154. [Google Scholar] [CrossRef]
- Strange, J.H.; Rahman, M.; Smith, E.G. Characterization of Porous Solids by NMR. Phys. Rev. Lett. 1993, 71, 3589–3591. [Google Scholar] [CrossRef] [PubMed]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Telkki, V.V.; Yliniemi, M.; Jokisaari, J. Moisture in softwoods: Fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions. Holzforschung 2013, 67, 291–300. [Google Scholar] [CrossRef]
- Provencher, S.W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982, 27, 213–227. [Google Scholar] [CrossRef]
- Provencher, S.W. CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 1982, 27, 229–242. [Google Scholar] [CrossRef]
- Gao, X.; Zhuang, S.; Jin, J.; Cao, P. Bound Water Content and Pore Size Distribution in Swollen Cell Walls Determined by NMR Technology. BioResources 2015, 10, 8208–8224. [Google Scholar] [CrossRef]
- Hansen, E.W.; Stöcker, M.; Schmidt, R. Low-Temperature Phase Transition of Water Confined in Mesopores Probed by NMR. Influence on Pore Size Distribution. J. Phys. Chem. 1996, 100, 2195–2200. [Google Scholar] [CrossRef]
- Gezici-Koç, Ö.; Erich, S.; Huinink, H.; Ven, L.; Adan, O. Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose 2017, 24, 535–553. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Javed, M.A.; Komulainen, S.; Telkki, V.-V.; Haapala, A.; Heräjärvi, H. Effect of natural weathering on water absorption and pore size distribution in thermally modified wood determined by nuclear magnetic resonance. Cellulose 2020, 27, 4235–4247. [Google Scholar] [CrossRef] [Green Version]
- Altgen, M.; Hofmann, T.; Militz, H. Wood moisture content during the thermal modification process affects the improvement in hygroscopicity of Scots pine sapwood. Wood Sci. Technol. 2016, 50, 1181–1195. [Google Scholar] [CrossRef]
- Stone, J.E.; Scallan, A.M. Effect of component removal upon porous structure of cell wall of wood–2. Swelling in water and fiber saturation point. Tappi 1967, 50, 496–501. [Google Scholar]
- Siau, J. Wood: Influence of Moisture on Physical Properties; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1995. [Google Scholar]
- Chen, C.M.; Wangaard, F. Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Sci. Technol. 1968, 2, 177–187. [Google Scholar]
- Hill, C.A.S.; Forster, S.C.; Farahani, M.R.M.; Hale, M.D.C.; Ormondroyd, G.A.; Williams, G.R. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. Int. Biodeterior Biodegrad. 2005, 55, 69–76. [Google Scholar] [CrossRef]
- Walker, J.C.F. Chapter 3: Water in Wood, in Primary Wood Processing Principles and Practice, 2nd ed.; University of Canterbury: Christchurch, New Zealand, 2006; pp. 69–94. [Google Scholar]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat treated wood. Holz Roh Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Andersson, S.; Serimaa, R.; Väänänen, T.; Paakkari, T.; Jämsä, S.; Viitaniemi, P. X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforschung 2005, 59, 422–427. [Google Scholar] [CrossRef]
- Esteves, B.; Domingos, I.; Pereira, H. Improvement of technological quality of eucalypt wood by heat treatment in air at 170–200 °C. For. Prod. J. 2007, 57, 47–52. [Google Scholar]
- Stone, J.E.; Scallan, A.M. Structural model for the cell wall of water-swollen wood pulp fibers based on their accessibility to macromolecules. Cellul. Chem. Technol. 1968, 2, 343–358. [Google Scholar]
Temperature (°C) | Diameter (nm) |
---|---|
−60 | 1.26 |
−50 | 1.39 |
−40 | 1.59 |
−30 | 1.92 |
−20 | 2.58 |
−10 | 4.56 |
−3 | 13.80 |
Basic Density | Douglas Fir | Norway Spruce | ||||||
---|---|---|---|---|---|---|---|---|
Ref. | 180 °C | 200 °C | 220 °C | Ref. | 180 °C | 200 °C | 220 °C | |
(g/cm3) | 0.51 | 0.49 | 0.48 | 0.48 | 0.40 | 0.38 | 0.38 | 0.37 |
Species | Treatment | 25 °C | −3 °C | −10 °C | −20 °C | −30 °C | −40 °C | −50 °C | −60 °C |
---|---|---|---|---|---|---|---|---|---|
Douglas fir | Ref. | 1.29 | 1.05 | 0.98 | 0.91 | 0.74 | 0.61 | 0.56 | 0.49 |
180 °C | 1.28 | 0.98 | 0.85 | 0.85 | 0.72 | 0.60 | 0.50 | 0.48 | |
200 °C | 1.12 | 0.98 | 0.85 | 0.79 | 0.64 | 0.60 | 0.49 | 0.46 | |
220 °C | 0.85 | 0.91 | 0.85 | 0.74 | 0.60 | 0.56 | 0.49 | 0.40 | |
Norway spruce | Ref. | 1.20 | 0.91 | 0.91 | 0.85 | 0.74 | 0.69 | 0.52 | 0.49 |
180 °C | 1.12 | 0.85 | 0.85 | 0.80 | 0.70 | 0.64 | 0.49 | 0.46 | |
200 °C | 0.98 | 0.85 | 0.79 | 0.79 | 0.69 | 0.69 | 0.45 | 0.40 | |
220 °C | 0.85 | 0.85 | 0.79 | 0.74 | 0.69 | 0.56 | 0.40 | 0.34 |
Treatments | 25 °C | −3 °C | −10 °C | −20 °C | −30 °C | −40 °C | −50 °C | −60 °C | |
---|---|---|---|---|---|---|---|---|---|
IP | Ref. | 4423 | 877 | 774 | 736 | 659 | 625 | 511 | 460 |
(a.u.) | 180 °C | 3538 | 950 | 835 | 780 | 711 | 670 | 521 | 498 |
200 °C | 3960 | 902 | 789 | 724 | 668 | 624 | 483 | 462 | |
220 °C | 3390 | 695 | 607 | 556 | 485 | 451 | 349 | 343 | |
MT | Ref. | 200.2 | 39.7 | 35.0 | 33.3 | 29.8 | 28.3 | 23.1 | 20.8 |
(%) | 180 °C | 120.2 | 32.3 | 28.4 | 26.5 | 24.2 | 22.8 | 17.7 | 16.9 |
200 °C | 110.4 | 25.1 | 22.0 | 20.2 | 18.6 | 17.4 | 13.5 | 12.9 | |
220 °C | 107.4 | 22.0 | 19.2 | 17.6 | 15.4 | 14.3 | 11.1 | 10.9 |
Treatments | 25 °C | −3 °C | −10 °C | −20 °C | −30 °C | −40 °C | −50 °C | −60 °C | |
---|---|---|---|---|---|---|---|---|---|
IP | Ref. | 5382 | 1205 | 1066 | 997 | 909 | 839 | 596 | 526 |
(a.u.) | 180 °C | 4137 | 1116 | 975 | 919 | 834 | 748 | 551 | 482 |
200 °C | 3910 | 894 | 773 | 735 | 661 | 597 | 442 | 385 | |
220 °C | 3697 | 716 | 617 | 586 | 515 | 428 | 328 | 294 | |
MT | Ref. | 190.7 | 42.7 | 37.8 | 35.4 | 32.2 | 29.8 | 21.1 | 18.7 |
(%) | 180 °C | 137.4 | 37.1 | 32.4 | 30.5 | 27.7 | 24.8 | 18.3 | 16.0 |
200 °C | 127.3 | 29.1 | 25.2 | 23.9 | 21.5 | 19.4 | 14.4 | 12.5 | |
220 °C | 119.4 | 23.1 | 19.9 | 18.9 | 16.6 | 13.8 | 10.6 | 9.5 |
Pore Size (nm) | Douglas Fir | Norway Spruce | ||||||
---|---|---|---|---|---|---|---|---|
Ref. | 180 °C | 200 °C | 220 °C | Ref | 180 °C | 200 °C | 220 °C | |
4.56–13.8 | 11.8 | 12.0 | 12.5 | 12.7 | 11.5 | 12.7 | 13.5 | 13.8 |
2.58–4.56 | 4.4 | 5.8 | 7.2 | 7.3 | 5.7 | 5.0 | 4.3 | 4.2 |
1.92–2.58 | 8.7 | 7.3 | 6.3 | 10.3 | 7.4 | 7.6 | 8.3 | 9.9 |
1.59–1.92 | 3.9 | 4.4 | 4.9 | 4.8 | 5.8 | 7.7 | 7.1 | 12.2 |
1.39–1.59 | 13.0 | 15.7 | 15.6 | 14.7 | 20.2 | 17.6 | 17.4 | 14.0 |
1.26–1.39 | 5.8 | 2.4 | 2.4 | 0.9 | 5.8 | 6.2 | 6.3 | 4.8 |
<1.26 | 52.5 | 52.4 | 51.2 | 49.4 | 43.7 | 43.2 | 43.1 | 41.0 |
Douglas Fir | Norway Spruce | |||||||
---|---|---|---|---|---|---|---|---|
Ref | 180 °C | 200 °C | 220 °C | Ref | 180 °C | 200 °C | 220 °C | |
>2.58 nm | 16.2 | 17.8 | 19.7 | 20.0 | 17.2 | 17.7 | 17.8 | 18.1 |
≤2.58 nm | 83.9 | 82.2 | 80.3 | 80.0 | 82.8 | 82.3 | 82.2 | 81.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Zhou, F.; Cai, J. Bound Water Content and Pore Size Distribution of Thermally Modified Wood Studied by NMR. Forests 2020, 11, 1279. https://doi.org/10.3390/f11121279
Cai C, Zhou F, Cai J. Bound Water Content and Pore Size Distribution of Thermally Modified Wood Studied by NMR. Forests. 2020; 11(12):1279. https://doi.org/10.3390/f11121279
Chicago/Turabian StyleCai, Chenyang, Fanding Zhou, and Jiabin Cai. 2020. "Bound Water Content and Pore Size Distribution of Thermally Modified Wood Studied by NMR" Forests 11, no. 12: 1279. https://doi.org/10.3390/f11121279
APA StyleCai, C., Zhou, F., & Cai, J. (2020). Bound Water Content and Pore Size Distribution of Thermally Modified Wood Studied by NMR. Forests, 11(12), 1279. https://doi.org/10.3390/f11121279