Neuroscience Application for the Analysis of Cultural Ecosystem Services Related to Stress Relief in Forest
Abstract
:1. Introduction
2. Method
2.1. Stimuli Registration and Presentation
2.2. Sample Recruitment and Interviews
- -
- T1: urban, Turkey oak (high density), Black pine (low density), European beech (high density), Douglas fir (low density);
- -
- T2: European beech (low density), Douglas fir (high density), Turkey oak (low density), Black pine (high density), urban.
2.3. EEG Record
2.4. Statistical Analysis
3. Results
3.1. EEG Analysis
3.2. ROS Scale Analysis
3.3. Willingness to Visit the Forests
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
To what extend to you agree with the following sentences? | Strongly disagree | Disagree | Not agree nor disagree | Agree | Strongly agree |
I feel healthy and relaxed | |||||
I feel calm | |||||
I feel powerful and ready for the daily routine | |||||
I feel attentive and careful | |||||
I can forget the daily problems | |||||
My thoughts are clear |
To what extend to you agree with the following sentences? | Strongly disagree | Disagree | Not agree nor disagree | Agree | Strongly agree |
I feel healthy and relaxed | |||||
I feel calm | |||||
I feel powerful and ready for the daily routine | |||||
I feel attentive and careful | |||||
I can forget the daily problems | |||||
My thoughts are clear |
Very low | low | Not high nor low | High | Very high |
5 (5–10 min) | 10 (10–15 min) | 15 (15–20 min) | 20 (20–25 min) | 25 (25–30 min) |
30 (30–40 min) | 35 (35–45 min) | 40 (40–50 min) | 45 (45–55 min) | 50 (50–60 min) |
60 (60–70 min) | 70 (70–80 min) | 80 (80–90 min) | 90 (90–100 min) | 100 (100–110 min) |
120 (120–140 min) | 140 (140–160 min) | 160 (160–180 min) | 180 (180–200 min) | 300 (300+ min) |
I Don’t Think I Will Visit This Forest |
References
- Assessment-Mea, M.E. Ecosystem and Human Well-Being: Biodiversity Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Pouya, S.; Demİrel, Ö. What is a healing garden? Akdeniz Üniversitesi Ziraat Fakültesi Derg. 2015, 28, 5–10. [Google Scholar]
- Marcus, C.C. Healing havens. Landsc. Archit. 2003, 93, 84–109. [Google Scholar]
- Relf, P.D. The therapeutic values of plants. Pediatr. Rehabil. 2005, 8, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Marušáková, L.; Sallmannshofer, M.; Kašpar, J.; Schwarz, M.; Tyrväinen, L.; Bauer, N. Human Health and Sustainable Forest Management. FOREST, 2019. [Google Scholar]
- Konu, H. Developing a forest-based wellbeing tourism product together with customers—An ethnographic approach. Tour. Manag. 2015, 49, 1–16. [Google Scholar] [CrossRef]
- Moseley, D.; Connolly, T.; Sing, L.; Watts, K. Developing an indicator for the physical health benefits of recreation in woodlands. Ecosyst. Serv. 2018, 31, 420–432. [Google Scholar] [CrossRef]
- Oosterbroek, B.; de Kraker, J.; Huynen, M.M.T.E.; Martens, P. Assessing ecosystem impacts on health: A tool review. Ecosyst. Serv. 2016, 17, 237–254. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef] [Green Version]
- Hazer, M.; Formica, M.K.; Dieterlen, S.; Morley, C.P. The relationship between self-reported exposure to greenspace and human stress in Baltimore, MD. Landsc. Urban Plan. 2018, 169, 47–56. [Google Scholar] [CrossRef]
- Orban, E.; Sutcliffe, R.; Dragano, N.; Jöckel, K.-H.; Moebus, S. Residential surrounding greenness, self-rated health and interrelations with aspects of neighborhood environment and social relations. J. Urban Heal. 2017, 94, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Hansmann, R.; Hug, S.; Seeland, K. Restoration and stress relief through physical activities in forests and parks. Urban For. Urban Green. 2007, 6, 213–225. [Google Scholar] [CrossRef]
- Lemyre, L.; Chair, M.R.; Lalande-Markon, M.-P. Psychological stress measure (PSM-9): Integration of an evidence-based approach to assessment, monitoring, and evaluation of stress in physical therapy practice. Physiother. Theory Pract. 2009, 25, 453–462. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Hartig, T.; Lindblom, K.; Ovefelt, K. The home and near-home area offer restoration opportunities differentiated by gender. Scand. Hous. Plan. Res. 1998, 15, 283–296. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y. The in fluence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Beil, K.; Hanes, D. The Influence of Urban Natural and Built Environments on Physiological and Psychological Measures of Stress—A Pilot Study. Int. J. Environ. Res. Public Health 2013, 10, 1250–1267. [Google Scholar] [CrossRef] [Green Version]
- Tsunetsugu, Y.; Lee, J.; Park, B.; Tyrväinen, L.; Kagawa, T.; Miyazaki, Y. Landscape and Urban Planning Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landsc. Urban Plan. 2013, 113, 90–93. [Google Scholar] [CrossRef]
- Hartig, T.; Evans, G.W.; Jamner, L.D.; Davis, D.S.; Tommy, G. Tracking restoration in natural and urban field settings. J. Environ. Psychol. 2003, 23, 109–123. [Google Scholar] [CrossRef]
- Ochiai, H.; Ikei, H.; Song, C.; Kobayashi, M.; Miura, T.; Kagawa, T.; Li, Q.; Kumeda, S.; Imai, M.; Miyazaki, Y. Physiological and psychological effects of a forest therapy program on middle-aged females. Int. J. Environ. Res. Public Health 2015, 12, 15222–15232. [Google Scholar] [CrossRef] [Green Version]
- Bielinis, E.; Takayama, N.; Boiko, S.; Omelan, A.; Bielinis, L. The effect of winter forest bathing on psychological relaxation of young Polish adults. Urban For. Urban Green. 2018, 29, 276–283. [Google Scholar] [CrossRef]
- Ohe, Y.; Ikei, H.; Song, C.; Miyazaki, Y. Evaluating the relaxation effects of emerging forest-therapy tourism: A multidisciplinary approach. Tour. Manag. 2017, 62, 322–334. [Google Scholar] [CrossRef]
- Park, B.; Tsunetsugu, Y.; Kasetani, T.; Hirano, H. Physiological Effects of Shinrin-yoku (Taking in the Atmosphere of the Forest)—Using Salivary Cortisol and Cerebral Activity as Indicators—. J. Physiol. Anthropol. 2007, 26, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, B.; Yuko, P.Æ.; Tamami, T.Æ. The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): Evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med. 2010, 15, 18–26. [Google Scholar]
- Park, B.; Tsunetsugu, Y.; Ishii, H.; Furuhashi, S.; Hirano, H.; Kagawa, T.; Miyazaki, Y. Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest) in a mixed forest in Shinano Town, Japan. Scand. J. For. Res. 2008, 23, 278–283. [Google Scholar] [CrossRef]
- Bratman, G.N.; Hamilton, J.P.; Daily, G.C. The impacts of nature experience on human cognitive function and mental health. Ann. N. Y. Acad. Sci. 2012, 1249, 118–136. [Google Scholar] [CrossRef] [PubMed]
- Bratman, G.N.; Daily, G.C.; Levy, B.J.; Gross, J.J. The benefits of nature experience: Improved affect and cognition. Landsc. Urban Plan. 2015, 138, 41–50. [Google Scholar] [CrossRef]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef]
- Annerstedt, M.; Jönsson, P.; Wallergård, M.; Johansson, G.; Karlson, B.; Grahn, P.; Marie, Å.; Währborg, P. Physiology & Behavior Inducing physiological stress recovery with sounds of nature in a virtual reality forest—Results from a pilot study. Psychol. Behav. 2013, 118, 240–250. [Google Scholar]
- Yu, C.-P.; Lee, H.-Y.; Luo, X.-Y. The effect of virtual reality forest and urban environments on physiological and psychological responses. Urban For. Urban Green. 2018, 35, 106–114. [Google Scholar] [CrossRef]
- Powell, K.E.; Paluch, A.E.; Blair, S.N. Physical activity for health: What kind? How much? How intense? On top of what? Annu. Rev. Public Health 2011, 32, 349–365. [Google Scholar] [CrossRef] [Green Version]
- de Kort, Y.A.W.; Meijnders, A.L.; Sponselee, A.A.G.; IJsselsteijn, W.A. What’s wrong with virtual trees? Restoring from stress in a mediated environment. J. Environ. Psychol. 2006, 26, 309–320. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Yeon, P.S.; Shin, W.S. The influence of indirect nature experience on human system. For. Sci. Technol. 2018, 14, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, R.; Simons, R.; Losito, B.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery During Expositure to Natural and Urban Environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Li, D.; Jane, H.-A. Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses. Landsc. Urban Plan. 2017, 167, 72–83. [Google Scholar] [CrossRef]
- Bielinis, E.; Omelan, A.; Boiko, S.; Bielinis, L. The Restorative Effect of Staying in a Broad-Leaved Forest on Healthy Young Adults in Winter and Spring. Balt. For. 2018, 24, 218–227. [Google Scholar]
- Shanahan, D.F.; Bush, R.; Gaston, K.J.; Lin, B.B.; Dean, J.; Barber, E.; Fuller, R.A. Health Benefits from Nature Experiences Depend on Dose. Sci. Rep. 2016, 6, 28551. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-Y.; Chen, P.-K. Human response to window views and indoor plants in the workplace. HortScience 2005, 40, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Roe, J.J.; Aspinall, P.A.; Mavros, P.; Coyne, R. Engaging the brain: The impact of natural versus urban scenes using novel EEG methods in an experimental setting. Environ. Sci 2013, 1, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Behm, H.; Bill, R.; Kang, J. Audio-visual perception of new wind parks. Landsc. Urban Plan. 2017, 165, 1–10. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef] [Green Version]
- Tversky, A.; Kahneman, D. The framing of decisions and the psychology of choice. Science 1981, 211, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Hanley, N.; Boyce, C.; Czajkowski, M.; Tucker, S.; Noussair, C.; Townsend, M. Sad or Happy? The Effects of Emotions on Stated Preferences for Environmental Goods. Environ. Resour. Econ. 2017, 68, 821–846. [Google Scholar] [CrossRef] [Green Version]
- Notaro, S.; Grilli, G.; Paletto, A. The role of emotions on tourists’ willingness to pay for the Alpine landscape: A latent class approach. Landsc. Res. 2018, 44, 743–756. [Google Scholar] [CrossRef]
- Bassi, A.; Colacito, R.; Fulghieri, P. ’O Sole Mio: An Experimental Analysis of Weather and Risk Attitudes in Financial Decisions. Rev. Financ. Stud. 2013, 26, 1824–1852. [Google Scholar] [CrossRef]
- Sawe, N. Using neuroeconomics to understand environmental valuation. Ecol. Econ. 2017, 135, 1–9. [Google Scholar] [CrossRef]
- Sawe, N.I.K. Adapting neuroeconomics for environmental and energy policy. Behav. Public Policy 2018, 3, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Sawe, N.; Knutson, B. NeuroImage Neural valuation of environmental resources. Neuroimage 2015, 122, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Ruff, C.C.; Huettel, S.A. Experimental methods in cognitive neuroscience. In Neuroeconomics; Elsevier: Amsterdam, The Netherlands, 2014; pp. 77–108. [Google Scholar]
- Norwood, M.F.; Lakhani, A.; Maujean, A.; Zeeman, H.; Creux, O.; Kendall, E. Brain activity, underlying mood and the environment: A systematic review. J. Environ. Psychol. 2019, 65, 101321. [Google Scholar] [CrossRef]
- Klem, G.H.; Lüders, H.O.; Jasper, H.H.; Elger, C. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1999, 52, 3–6. [Google Scholar]
- Righetto, C.; Prosdocimi Gianquinto, G.; Orsini, F.; Meneghello, F.; Marcassa, G.; Koch, I.; Sgaravatti, P.; Piccolomini, B. Realization of a neuro-rehabilitation therapeutic garden: Design criteria and horticultural choices. Acta Hortic. 2016, 1121, 51–58. [Google Scholar] [CrossRef]
- Wichrowski, M.; Whiteson, J.; Haas, F.; Mola, A.; Rey, M.J. Effects of horticultural therapy on mood and heart rate in patients participating in an inpatient cardiopulmonary rehabilitation program. J. Cardiopulm. Rehabil. 2005, 25, 270–274. [Google Scholar] [CrossRef]
- Naderi, J.R.; Shin, W.-H. Humane design for hospital landscapes: A case study in landscape architecture of a healing garden for nurses. HERD Heal. Environ. Res. Des. J. 2008, 2, 82–119. [Google Scholar] [CrossRef]
- Gigliotti, C.M.; Jarrott, S.E.; Yorgason, J. Harvesting Health: Effects of Three Types of Horticultural Therapy Activities for Persons with Dementia. Dementia 2004, 3, 161–180. [Google Scholar] [CrossRef]
- Corona, P. Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. Environ. Res. 2016, 144, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; CUP Archive: Cambridge, UK, 1989; ISBN 0521341396. [Google Scholar]
- Jiang, B.; Chang, C.-Y.; Sullivan, W.C. A dose of nature: Tree cover, stress reduction, and gender differences. Landsc. Urban Plan. 2014, 132, 26–36. [Google Scholar] [CrossRef]
- Anderson, H.B.; Nilsen, L.; Tømmervik, H.; Karlsen, S.R.; Nagai, S.; Cooper, E.J. Using ordinary digital cameras in place of near-infrared sensors to derive vegetation indices for phenology studies of High Arctic vegetation. Remote Sens. 2016, 8, 847. [Google Scholar] [CrossRef] [Green Version]
- Ariely, D.; Berns, G.S. Neuromarketing: The hope and hype of neuroimaging in business. Nat. Rev. Neurosci. 2010, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- Calvert, G.A.; Brammer, M.J. Predicting consumer behavior: Using novel mind-reading approaches. IEEE Pulse 2012, 3, 38–41. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Wise, C.; Kodagoda, S.; Louviere, J.; Kahn, B.E.; Townsend, C. Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Syst. Appl. 2013, 40, 3803–3812. [Google Scholar] [CrossRef]
- Chen, H.T.; Yu, C.P.; Lee, H.Y. The effects of forest bathing on stress recovery: Evidence from middle-aged females of Taiwan. Forests 2018, 9, 403. [Google Scholar] [CrossRef] [Green Version]
Absolute Beta Waves | Mean Difference Test | ||||||||
---|---|---|---|---|---|---|---|---|---|
af7 | af8 | tp9 | tp10 | af7 | af8 | tp9 | tp10 | ||
Urban | 0.659 | 0.561 | 0.960 | 0.901 | Urban vs. Turkey oak | 0.530 | 0.000 | 0.000 | 0.000 |
(0.413) | (0.348) | (0.363) | (0.441) | Urban vs. Black pine | 0.050 | 0.050 | 0.600 | 0.000 | |
Turkey oak | 0.600 | 0.569 | 0.915 | 0.964 | Urban vs. European beech | 0.000 | 0.000 | 0.220 | 0.000 |
(0.454) | (0.390) | (0.316) | (0.321) | Urban vs. Douglas fir | 0.000 | 0.000 | 0.000 | 0.000 | |
Black pine | 0.636 | 0.545 | 0.974 | 0.866 | Turkey oak vs. Black pine | 0.190 | 0.120 | 0.000 | 0.000 |
(0.492) | (0.409) | (.473) | (0.329) | Turkey oak vs. European beech | 0.000 | 0.000 | 0.000 | 0.000 | |
European beech | 0.608 | 0.614 | 0.980 | 0.893 | Turkey oak vs. Douglas fir | 0.000 | 0.000 | 0.000 | 0.000 |
(0.419) | (0.526) | (0.324) | (0.279) | Black pine vs. European Beech | 0.000 | 0.000 | 0.080 | 0.770 | |
Douglas fir | 0.566 | 0.473 | 0.983 | 0.940 | Pine vs. Douglas fir | 0.000 | 0.000 | 0.000 | 0.000 |
(0.381) | (0.419) | (0.339) | (0.371) | European Beech vs. Douglas fir | 0.000 | 0.000 | 0.000 | 0.000 |
Turkey Oak | Black Pine | European Beech | Douglas Fir | Average | |
---|---|---|---|---|---|
High density | 0.8237 | 0.5892 | 0.8964 | 0.6527 | 0.7405 |
Low density | 0.7167 | 0.9825 | 0.6865 | 0.8472 | 0.8082 |
Average | 0.7702 | 0.7858 | 0.7914 | 0.7499 |
Urban | Turkey Oak | Black Pine | European Beech | Douglas Fir | |
---|---|---|---|---|---|
Item 1 | 2.5 | 3.2 | 3.45 | 3.4 | 3.55 |
Item 2 | 2.8 | 3.45 | 3.65 | 3.3 | 3.5 |
Item 3 | 3.1 | 3.45 | 3.6 | 3.2 | 3.3 |
Item 4 | 3.45 | 3.4 | 3.55 | 3.5 | 3.45 |
Item 5 | 2 | 3.15 | 3.15 | 2.75 | 3.15 |
Item 6 | 3.05 | 3.3 | 3.6 | 3.65 | 3.75 |
Total | 2.82 | 3.33 | 3.50 | 3.30 | 3.45 |
Sample | ANOVA | Tuckey Test for Binary Comparisons | |||||
---|---|---|---|---|---|---|---|
F stat | p-value | Test | diff | lwr | upr | p adj | |
Full | 4.62 | 0.0018 | Turkey oak-urban | 0.508 | 0.007 | 1.01 | 0.045 |
Black pine-urban | 0.683 | 0.182 | 1.185 | 0.002 | |||
European beech-urban | 0.483 | −0.018 | 0.985 | 0.064 | |||
Douglas fir-urban | 0.633 | 0.132 | 1.135 | 0.006 | |||
Black pine-Turkey oak | 0.175 | −0.326 | 0.676 | 0.868 | |||
European beech -Turkey oak | −0.025 | −0.526 | 0.476 | 1 | |||
Douglas fir-Turkey oak | 0.125 | −0.376 | 0.626 | 0.957 | |||
European beech - Black pine | −0.2 | −0.701 | 0.301 | 0.801 | |||
Douglas fir- Black pine | −0.05 | −0.551 | 0.451 | 0.999 | |||
Douglas fir- European beech | 0.15 | −0.351 | 0.651 | 0.92 | |||
T1 vs. T2 | 6.89 | 0.01 | |||||
male vs. female | 2.1 | 0.15 | |||||
workers vs. non-workers | 1.46 | 0.23 | |||||
residence | 1.41 | 0.24 | |||||
Childhood residence | 0.37 | 0.82 |
Turkey Oak | Black Pine | European Beech | Douglas Fir | |
---|---|---|---|---|
WTV | 2.65 | 3.25 | 2.75 | 3.35 |
(st. dev) | (1.09) | (0.91) | (1.12) | (0.99) |
WTV (km) | 33 | 45 | 42.25 | 54.75 |
(st. dev) | (20.42) | (28.38) | (33.50) | (30.88) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacchelli, S.; Grilli, G.; Capecchi, I.; Bambi, L.; Barbierato, E.; Borghini, T. Neuroscience Application for the Analysis of Cultural Ecosystem Services Related to Stress Relief in Forest. Forests 2020, 11, 190. https://doi.org/10.3390/f11020190
Sacchelli S, Grilli G, Capecchi I, Bambi L, Barbierato E, Borghini T. Neuroscience Application for the Analysis of Cultural Ecosystem Services Related to Stress Relief in Forest. Forests. 2020; 11(2):190. https://doi.org/10.3390/f11020190
Chicago/Turabian StyleSacchelli, Sandro, Gianluca Grilli, Irene Capecchi, Lorenzo Bambi, Elena Barbierato, and Tommaso Borghini. 2020. "Neuroscience Application for the Analysis of Cultural Ecosystem Services Related to Stress Relief in Forest" Forests 11, no. 2: 190. https://doi.org/10.3390/f11020190
APA StyleSacchelli, S., Grilli, G., Capecchi, I., Bambi, L., Barbierato, E., & Borghini, T. (2020). Neuroscience Application for the Analysis of Cultural Ecosystem Services Related to Stress Relief in Forest. Forests, 11(2), 190. https://doi.org/10.3390/f11020190