Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnauba Wax Complex Emulsion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Epoxidized Linseed Oil (ELO)
2.3. Preparation and Characterization of Emulsion
2.4. Wood Impregnation
2.5. Micromorphology Characteristic
2.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis of Wood
2.7. Equilibrium Moisture Content (EMC)
2.8. Water Contact Angle (WCA) Characterization
2.9. Water Uptake and Swelling Test
3. Results and Discussion
3.1. Characterization of ELO and Emulsions
3.2. Weight Percent Gain (WPG) and Bulking Coefficient (BC)
3.3. Morphological Observation of Wood
3.4. Chemical Structure Analysis Using FTIR Spectroscopy
3.5. Equilibrium Moisture Content (EMC)
3.6. Hydrophobicity of Wood
3.7. Liquid Water Uptake and Dimensional Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, T.; Ma, E.; Cao, J. Synergistic effects of partial hemicellulose removal and furfurylation on improving the dimensional stability of poplar wood tested under dynamic condition. Ind. Crop. Prod. 2019, 139, 111550. [Google Scholar] [CrossRef]
- Glass, S.V.; Zelinka, S.L. Moisture relations and physical properties of wood. In Wood Handbook: Wood as An Engineering Material; US Dept. of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Volume 190, pp. 4.1–4.19. [Google Scholar]
- Wang, W.; Zhu, Y.; Cao, J.; Liu, R. Improvement of dimensional stability of wood by in situ synthesis of organo-montmorillonite: preparation and properties of modified Southern pine wood. Holzforschung 2014, 68, 29–36. [Google Scholar] [CrossRef]
- Schultz, T.; Nicholas, D.D.; Ingram, L.L. Laboratory and outdoor water repellency and dimensional stability of southern pine sapwood treated with a waterborne water repellent made from resin acids. Holzforschung 2007, 61, 317–322. [Google Scholar] [CrossRef]
- Evans, P.D.; Wingate-Hill, R.; Cunningham, R.B. Wax and oil emulsion additives: How effective are they at improving the performance of preservative-treated wood? Forest Prod. J. 2009, 59, 66–70. [Google Scholar]
- Humar, M.; Lesar, B. Efficacy of linseed- and tung-oil-treated wood against wood-decay fungi and water uptake. Int. Biodeterior. Biodegradation 2013, 85, 223–227. [Google Scholar] [CrossRef]
- Wang, S.; Shi, J.; Liu, C.; Xie, C.; Wang, C. Fabrication of a superhydrophobic surface on a wood substrate. Appl. Surf. Sci. 2011, 257, 9362–9365. [Google Scholar] [CrossRef]
- Ma, C.Y.; Wood, D.F. Functional properties of oat proteins modified by acylation, trypsin hydrolysis or linoleate treatment. J. Am. Oil Chem. Soc. 1987, 64, 1726–1731. [Google Scholar] [CrossRef]
- Thiebaud-Roux, S.; Borredon, M.; Baziard, G.; Senocq, F. Properties of wood esterified by fatty-acid chlorides. Bioresour. Technol. 1997, 59, 103–107. [Google Scholar] [CrossRef]
- Esteves, B.; Nunes, E.; Pereira, H. Properties of furfurylated wood (Pinus pinaster). Eur. J. Wood Wood Prod. 2011, 69, 521–525. [Google Scholar] [CrossRef]
- Pilgård, A.; De Vetter, L.; Van Acker, J.; Westin, M. Toxic hazard of leachates from furfurylated wood: Comparison between two different aquatic organisms. Environ. Toxicol. Chem. 2010, 29, 1067–1071. [Google Scholar] [CrossRef]
- He, Z.; Qian, J.; Qu, L.; Yan, N.; Yi, S. Effects of Tung oil treatment on wood hygroscopicity, dimensional stability and thermostability. Ind. Crop. Prod. 2019, 140, 111647. [Google Scholar] [CrossRef]
- Ulvcrona, T.; Lindberg, H.; Bergsten, U. Impregnation of Norway spruce (Picea abies L. Karst.) wood by hydrophobic oil and dispersion patterns in different tissues. Forestry 2005, 79, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Paajanen, L.; Ritschkoff, A.C. Effect of crude tall oil, linseed oil and rapeseed oil on the growth of the decay fungi. In Proceedings of the International Research Group on Wood Protection, Cardiff, UK, 12–17 May 2002. [Google Scholar]
- Fredriksson, M.; Wadsö, L.; Ulvcrona, T. Moisture sorption and swelling of Norway spruce (Picea abies (L.) Karst.) impregnated with linseed oil. Wood Mater. Sci. Eng. 2010, 5, 135–142. [Google Scholar] [CrossRef]
- Hyvönen, A.; Nelo, M.; Piltonen, P.; Hormi, O.; Niinimäki, J. Using iron catalyst to enhance the drying properties of crude tall oil-based wood preservative. Holz als Roh- und Werkst. 2006, 65, 105–111. [Google Scholar] [CrossRef]
- Janković, M.R.; Govedarica, O.; Sinadinović-Fišer, S.V. The epoxidation of linseed oil with in situ formed peracetic acid: A model with included influence of the oil fatty acid composition. Ind. Crop. Prod. 2020, 143, 111881. [Google Scholar] [CrossRef]
- Jebrane, M.; Fernandez-Cano, V.; Panov, D.; Terziev, N.; Daniel, G. Novel hydrophobization of wood by epoxidized linseed oil. Part 1. Process description and anti-swelling efficiency of the treated wood. Holzforschung 2015, 69, 173–177. [Google Scholar] [CrossRef]
- Jebrane, M.; Fernandez-Cano, V.; Panov, D.; Terziev, N.; Daniel, G. Novel hydrophobization of wood by epoxidized linseed oil. Part 2. Characterization by FTIR spectroscopy and SEM, and determination of mechanical properties and field test performance. Holzforschung 2015, 69, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Temiz, A.; Kose, G.; Panov, D.; Terziev, N.; Alma, M.H.; Palanti, S.; Akbas, S. Effect of bio-oil and epoxidized linseed oil on physical, mechanical, and biological properties of treated wood. J. Appl. Polym. Sci. 2013, 130, 1562–1569. [Google Scholar] [CrossRef]
- Panov, D.; Terziev, N.; Daniel, G. Using plant oils as hydrophobic substances for wood protection. In Proceedings of the International Research Group on Wood Protection, Biarritz, France, 9–13 May 2010. [Google Scholar]
- Sahoo, S.K.; Khandelwal, V.; Manik, G. Development of completely bio-based epoxy networks derived from epoxidized linseed and castor oil cured with citric acid. Polym. Adv. Technol. 2018, 29, 2080–2090. [Google Scholar] [CrossRef]
- De Freitas, C.A.S.; De Sousa, P.H.M.; Soares, D.J.; Da Silva, J.Y.G.; Benjamin, S.R.; Guedes, M.I.F. Carnauba wax uses in food - A review. Food Chem. 2019, 291, 38–48. [Google Scholar] [CrossRef]
- Villalobos-Hernández, J.; Müller-Goymann, C.C. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: The synergistic interaction between organic and inorganic sunscreens at nanoscale. Int. J. Pharm. 2006, 322, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Uhumwangho, M.U.; Okor, R.S. A comparative study of dissolution characteristics of polymeric and wax granulations of theophylline and their tablets. Pak. J. Pharm. Sci. 2008, 21, 230–236. [Google Scholar] [PubMed]
- Lozhechnikova, A.; Vahtikari, K.; Hughes, M.; Österberg, M. Toward energy efficiency through an optimized use of wood: The development of natural hydrophobic coatings that retain moisture-buffering ability. Energy Build. 2015, 105, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Lozhechnikova, A.; Bellanger, H.; Michen, B.; Burgert, I.; Österberg, M. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Appl. Surf. Sci. 2017, 396, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Forsman, N.; Lozhechnikova, A.; Khakalo, A.; Johansson, L.-S.; Vartiainen, J.; Österberg, M. Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydr. Polym. 2017, 173, 392–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirel, K.D.; Temiz, A.; Jebrane, M.; Terziev, N. Micro-distribution, water absorption and dimensional stability of wood treated with epoxidized plant oils. Bioresources 2018, 13, 5124–5138. [Google Scholar]
- Milanovic, J.; Levic, S.; Djordjević, V.; Nedovic, V.; Bugarski, B. Carnauba wax microparticles produced by melt dispersion technique. Chem. Pap. 2011, 65, 213–220. [Google Scholar] [CrossRef]
- Toscano, G.; Riva, G.; Pedretti, E.F.; Duca, D. Vegetable oil and fat viscosity forecast models based on iodine number and saponification number. Biomass- Bioenergy 2012, 46, 511–516. [Google Scholar] [CrossRef]
- ASTM D5554-15. Standard Test Method for Determination of the Iodine Value of Fats and Oils; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Wang, J.; Zhong, H.; Ma, E.; Cao, J. Properties of wood treated with compound systems of paraffin wax emulsion and copper azole. Holz als Roh- und Werkst. 2016, 315–323. [Google Scholar] [CrossRef]
- Donath, S.; Militz, H.; Mai, C. Wood modification with alkoxysilanes. Wood Sci. Technol. 2004, 38, 555–566. [Google Scholar] [CrossRef]
- GB/T 1931-2009. Method for Determination of Moisture Content of Wood; (ISO 3130:1975, Wood-Determination of moisture content for physical and mechanical test); National Committee for Standardization of Wood: Beijing, China, 2009. [Google Scholar]
- Xia, Y.; LaRock, R.C. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem. 2010, 12, 1893–1909. [Google Scholar] [CrossRef]
- Dinda, S.; Patwardhan, A.V.; Goud, V.V.; Pradhan, N.C. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour. Technol. 2008, 99, 3737–3744. [Google Scholar] [CrossRef] [PubMed]
- Sinadinović-Fišer, S.; Janković, M.; Petrovic, Z.S. Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. J. Am. Oil Chem. Soc. 2001, 78, 725–731. [Google Scholar] [CrossRef]
- Jia, L.K.; Gong, L.X.; Ji, W.J.; Kan, C.Y. Synthesis of vegetable oil based polyol with cottonseed oil and sorbitol derived from natural source. Chin. Chem. Lett. 2011, 22, 1289–1292. [Google Scholar] [CrossRef]
- Park, S.; Jin, F.-L.; Lee, J.-R. Synthesis and Thermal Properties of Epoxidized Vegetable Oil. Macromol. Rapid Commun. 2004, 25, 724–727. [Google Scholar] [CrossRef]
- Adhvaryu, A.; Erhan, S. Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind. Crop. Prod. 2002, 15, 247–254. [Google Scholar] [CrossRef]
- Latreille, B.; Paquin, P. Evaluation of Emulsion Stability by Centrifugation with Conductivity Measurements. J. Food Sci. 1990, 55, 1666–1668. [Google Scholar] [CrossRef]
- Carlquist, S. Wood Anatomy of Begoniaceae, with Comments on Raylessness, Paedomorphosis, Relationships, Vessel Diameter, and Ecology. Bull. Torrey Bot. Club 1985, 112, 59. [Google Scholar] [CrossRef]
- Ghosh, S.C.; Militz, H.; Mai, C. The efficacy of commercial silicones against blue stain and mould fungi in wood. Holz als Roh- und Werkst. 2009, 67, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Supanchaiyamat, N.; Shuttleworth, P.S.; Hunt, A.J.; Clark, J.H.; Matharu, A.S. Thermosetting resin based on epoxidised linseed oil and bio-derived crosslinker. Green Chem. 2012, 14, 1759–1765. [Google Scholar] [CrossRef]
- Terziev, N.; Panov, D. Plant Oils as “Green” Substances for Wood Protection; Minimising the Environmental Impact of the Forest Products Industries: Porto, Portugal, September 2010; pp. 143–149. [Google Scholar]
- Miwa, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces. Langmuir 2000, 16, 5754–5760. [Google Scholar] [CrossRef]
- Boquillon, N. Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites. J. Appl. Polym. Sci. 2006, 101, 4037–4043. [Google Scholar] [CrossRef]
- Hyvönen, A.; Piltonen, P.; Niinimäki, J. Tall oil/water – emulsions as water repellents for Scots pine sapwood. Holz als Roh- und Werkst. 2005, 64, 68–73. [Google Scholar] [CrossRef]
- Garai, R.M.; Sánchez, I.C.; García, R.T.; Rodriguez-Valverde, M.A.; Vílchez, M.A.C.; Hidalgo-Alvarez, R. Study on the Effect of Raw Material Composition on Water?Repellent Capacity of Paraffin Wax Emulsions on Wood. J. Dispers. Sci. Technol. 2005, 26, 9–18. [Google Scholar] [CrossRef]
- Lesar, B.; Humar, M. Use of wax emulsions for improvement of wood durability and sorption properties. Holz als Roh- und Werkst. 2010, 69, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Rowell, R.M.; Banks, W.B. Water repellency and dimensional stability of wood. In Water Repellency and Dimensional Stability of Wood; USDA Forest Service: Washington, DC, USA, 1985; Volume 50, pp. 1–24. [Google Scholar]
- Lesar, B.; Pavlič, M.; Petrič, M.; Škapin, A.S.; Humar, M. Wax treatment of wood slows photodegradation. Polym. Degrad. Stab. 2011, 96, 1271–1278. [Google Scholar] [CrossRef]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Cadiz, V. Renewable polymeric materials from vegetable oils: A perspective. Mater. Today 2013, 16, 337–343. [Google Scholar] [CrossRef]
Groups | ELO | CW | Particle Size | Viscosity | ||
---|---|---|---|---|---|---|
Content | Content | (Before) | (After) | (Before) | (After) | |
(%) | (%) | (nm) | (nm) | (mPa·s) | (mPa·s) | |
ELO20 | 20 | - | 195.0 | 194.2 | 45 | 52 |
CW2 | - | 2 | 219.8 | 222.5 | 22 | 22 |
CW4 | - | 4 | 219.8 | 221.9 | 22 | 23 |
CW6 | - | 6 | 220.3 | 225.7 | 23 | 22 |
E20/C2 | 20 | 2 | 195.3 | 197.5 | 26 | 27 |
E20/C4 | 20 | 4 | 188.8 | 205.1 | 28 | 28 |
E20/C6 | 20 | 6 | 229.9 | 237.9 | 30 | 30 |
Groups | WPG (%) | BC (%) | EMC (%) |
---|---|---|---|
control | −0.52 ±0.03 | 0.56 ± 0.23 | 8.46 ± 0.55 |
ELO20 | 30.95 ± 1.31 | 2.45 ± 0.38 | 8.11 ± 0.16 |
CW2 | 3.67 ± 0.55 | 0.57 ± 0.35 | 8.28 ± 0.07 |
CW4 | 6.98 ± 0.53 | 0.89 ± 0.49 | 8.28 ± 0.14 |
CW6 | 9.93 ± 1.27 | 1.17 ± 0.49 | 8.24 ± 0.06 |
E20/C2 | 36.06 ± 1.82 | 2.71 ± 0.25 | 7.89 ± 0.66 |
E20/C4 | 34.65 ± 1.91 | 2.11 ± 0.61 | 7.76 ± 0.05 |
E20/C6 | 35.80 ± 1.14 | 2.48 ± 0.25 | 7.59 ± 0.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, Y.; Cao, J.; Wang, W. Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnauba Wax Complex Emulsion. Forests 2020, 11, 271. https://doi.org/10.3390/f11030271
Chen J, Wang Y, Cao J, Wang W. Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnauba Wax Complex Emulsion. Forests. 2020; 11(3):271. https://doi.org/10.3390/f11030271
Chicago/Turabian StyleChen, Jinyu, Yujiao Wang, Jinzhen Cao, and Wang Wang. 2020. "Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnauba Wax Complex Emulsion" Forests 11, no. 3: 271. https://doi.org/10.3390/f11030271
APA StyleChen, J., Wang, Y., Cao, J., & Wang, W. (2020). Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnauba Wax Complex Emulsion. Forests, 11(3), 271. https://doi.org/10.3390/f11030271