Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Microclimate Monitoring
2.3. Surface Runoff and Sediment Yield Measurement
2.4. Vegetation Types
3. Results
3.1. Characterization of Rainfall Patterns in the Nverzhai Basin
3.2. Contribution of Different Vegetation Covers to Runoff Generation
3.3. Contribution of Different Vegetation Types to Annual Sediment Yield
3.4. Surface Runoff and Sediment Yield vs Rainfall Relationships
4. Discussion
4.1. Impact of Vegetation Types on Surface Runoff Generation
4.2. Relationship Between Surface Runoff and Rainfall
5. Conclusions
- Surface runoff and sediment yield associated with different vegetation types gradually decreased after 2013, which is the direct result of the area’s afforestation process. Soil and water loss have recently decreased in the Nverzhai basin while water conservation has gradually increased.
- The surface runoff and sediment content recorded for the configuration of sloping farmland is the largest between all the investigated vegetation types, while the one measured for the broad-leaved mixed forest, the coniferous mixed forest, and shrubs is the smallest.
- There could be a correlation between surface runoff, sediment content, and rainfall (R2 = 0.35).
- There is a linear relationship between surface runoff and sediment yield (R2 = 0.75), and considering that one of the major causes of surface runoff is linked to heavy rainfall events, in order to reduce the direct erosion of raindrops and reduce the source of runoff and sediment, a large number of broad-leaved trees, coniferous, and shrubs are highly indicated to be planted to enhance the soil resistance and reduction of kinetic energy associated with raindrops.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, R.J.; Gao, P.; Li, C.; Liu, P.W.; Sun, J.N.; Liu, Q. Characteristics of surface flow and interflow and nitrogen loss in Quercus acutissima forest land under simulated rainfall. Acta Ecol. Sin. 2019, 39, 2732–2740. [Google Scholar]
- Meng, H.Q.; Zhao, T.Q. Nutrient loss from riparian cultivated land under different rainfall erosivity. Bull. Soil Water Conserv. 2009, 29, 28–31. [Google Scholar]
- Zhang, Y.; Niu, J.Z.; Xie, B.Y.; Yu, X.X.; Zhu, J.G.; Li, W. Dynamics mechanism of the effect of forest vegetation on hill-slop sater erosion. Acta Ecol. Sin. 2008, 28, 5084–5094. [Google Scholar]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Favis-Mortlock, D.T.; Guerra, A.J.T. The implications of general circulation model estimates of rainfall for future erosion: A case study from Brazil. Catena 1999, 37, 329–354. [Google Scholar] [CrossRef]
- Nearing, M.A. Potential changes in rainfall erosivity in the U.S. with climate change during the 21st century. J. Soil Water Conserv. 2001, 56, 229–232. [Google Scholar]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Salles, C.; Poesen, J.; Sempere-Torres, D. Kinetic energy of rain and its functional relationship with intensity. J. Hydrol. 2002, 257, 256–270. [Google Scholar] [CrossRef]
- Cao, G.X.; Wang, K.Q.; Zhao, Y.Y.; Duan, X. The Mechanism of surface runoff and sediment yield of evergreen broad-leaved forest in the middle subtropical region. J. Soil Water Conserv. 2018, 32, 30–36. [Google Scholar]
- Song, J.H. Research on Hydrological and Ecological Function of Natural Secondary Forests in Jinyun Mountain. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2008. [Google Scholar]
- Marc, D.; Richard, H. Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec (Canada). Agr. Ecosyst. Environ. 2009, 131, 85–97. [Google Scholar]
- Wang, Q.J.; Zhao, G.X.; Liu, Y.L.; Zhang, P.Y.; Cai, J. Effects of vegetation types on yield of surface runoff and sediment, loss of nitrogen and phosphorus along loess slope land. Trans. Chin. Soc. Agric. Eng. 2016, 14, 195–201. [Google Scholar]
- Carroll, C.; Merton, L.; Burger, P. Impact of vegetative cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. Aust. J. Soil Res. 2000, 38, 313–328. [Google Scholar] [CrossRef]
- Li, H.T.; Zhao, Y.J.; Li, G.R.; Hu, X.S.; Lu, H.J.; Zhu, H.L. Experimental research on slope protection with vegetation under situ rainfall simulation in cold and arid environment of loess area. Res. Soil & Water Conserv. 2014, 6, 304–311. [Google Scholar]
- Chen, S.X.; Shen, Y. Simulation analysis on soil Infiltration characteristics under main vegetation types in Huangpu river source region. Res. Soil Water Conversat. 2016, 23, 59–63. [Google Scholar]
- Garciaestringana, P.; Alonso-blaquez, N.; Marques, M.J. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. Eur. J. Soil Sci. 2010, 61, 174–185. [Google Scholar] [CrossRef]
- Mutuku, D.; Kaniri, H.; Ndufa, J.; Kiama, S.; Mware, M. Influence of Vegetation Cover and Topographic Position on Water Infiltration, Organic Matter Content and Aggregate Stability of Grassland Soils in Semi-Arid Kenya. Adv. Agric. Sci. 2019, 7, 1–17. [Google Scholar]
- Li, J.; Liu, S.; Fu, B.; Wang, J. Dissolved carbon fluzes in a vegetation restoration area of an eroding landscape. Water Res. 2019, 152, 106–116. [Google Scholar] [CrossRef]
- Miyata, S.; Gomi, T.; Sidle, R.C.; Hiraoka, M.; Onda, Y.; Yamamoto, K.; Nonoda, T. Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments: Implications for hydrological connectivity. Sci. Total Environ. 2019, 699, 148–159. [Google Scholar] [CrossRef]
- Sidle, R.C.; Gomi, T.; Loaiza Usuga, J.C.; Jarihani, B. Hydrogeomorphic processes and scaling issues in the continuum from soil pedons to catchments. Earth Sci. Rev. 2017, 175, 75–96. [Google Scholar] [CrossRef]
- NG Charles, W.W.; Lu, B.W.; Ni, J.J.; Chen, Y.M.; Chen, R.; Guo, H.W. Effects of vegetation type on water infiltration in a three-layer cover system using recycled concrete. J. Zhejiang Univ. Sci. A 2019, 20, 1–9. [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Tan, X. Distinguishing the effects of vegetation restoration on runoff and sediment generation on simulated rainfall on the hillslopes of the loess plateau of China. Plant Soil 2019, 447, 393–412. [Google Scholar] [CrossRef]
- Salem, N.B.; Alvarez, S.; Lopez-Vicente, M. Soil and Water Conservation in Rainfed Vineyards with common sainfoin and spontaneous vegetation under different ground conditions. Water 2018, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nobrega, R.L.B. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Mattsson, T.; Lehtoranta, J.; Ekholm, P.; Palviainen, M.; Kortelainen, P. Runoff changes have a land cover specific effect on the seasonal fluxes of terminal electron acceptors in the boreal catchments. Sci. Total Environ. 2017, 601–602, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Fonturbel, T.; Vega, J.A. Wildfire burned soil organic horizon contribution to runoff and infiltration in a Pinus pinaster forest soil. J. For. Res.-Jpn. 2019, 24, 86–92. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Givati, A.; Paz-Kagan, T.; Karnieli, A. Forest composition effect on wildfire pattern and runoff regime in a Mediterranean watershed. Ecohydrology 2017, 11, e1936. [Google Scholar] [CrossRef]
- Etehadi Abari, M.; Majnounian, B.; Malekian, A.; Jourgholami, M. Effects of forest harvesting on runoff an sediment characteristics in the Hyrcanian forests, northern Iran. Eur. J. For. Res. 2017, 136, 375–386. [Google Scholar] [CrossRef]
- Christoph, M.; Gertraud, M.; Klaus, K. Comparison of the results of a small-plot and a large-plot rainfall simulator-Effects of land use and land cover on surface runoff in Alpine catchments. Catena 2017, 156, 184–196. [Google Scholar]
- Li, R.; Shangguan, Z.P.; Liu, B.Y.; Zheng, F.L.; Yang, Q.K. Advances of soil erosion research during the past 60 years in China. Sci. Soil Water Conserv. 2009, 7, 1–6. [Google Scholar]
- Gumiere, S.J.; Bissonnais, Y.L.; Raclot, D. Vegetated filter effects on sedimentological connectivity of agricultural catchments in erosion modelling: A review. Earth Surf. Proc. Land. 2011, 36, 3–19. [Google Scholar] [CrossRef]
- Liu, Z.Q. Study on the Hydrological and Ecological Functions of Forest in the Typical Small Watershed of Yunnan Plateau. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2014. [Google Scholar]
- Zhang, X.M.; Yu, X.X.; Wu, S.H.; Wei, T.X.; Zhang, X.P. Effects of forest vegetation on runoff and sediment production on sloping lands of Loess area. Chin. J. Appl. Ecol. 2005, 16, 1613–1617. [Google Scholar] [CrossRef]
- Yu, D.F.; Dai, Q.H.; Wang, Q.H.; Xian, B. Effects of contour grass hedges on soil and water losses of sloping cropland in Beijing. Trans. Chin. Soc. Agric. Eng. 2010, 26, 89–96. [Google Scholar]
- Atucha, A.; Merwin, I.A.; Brown, M.G. Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant Soil 2013, 368, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Lenka, N.K.; Satapathy, K.K.; Lal, R. Weed strip management for minimizing soil erosion and enhancing productivity in the sloping lands of north-eastern India. Soil Till. Res. 2017, 170, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.X.; Sun, Y.M.; Hu, Y.; Zhu, Q.J. Impact of weeds on surface runoff and soil loss in a navel orange orchard. J. Weed Sci. 2019, 37, 23–28. [Google Scholar]
- Lv, T.; Liao, M.; Ye, Z.J.; Fang, Z.P.; Huang, X.H.; Zhang, Y.; Shi, H.L.; Shen, J. Characteristics of nitrogen runoff loss under different land uses in a rain collection area of the Hexi Reservoir in Changxing County. J. Agro-Environ. Sci. 2017, 36, 1369–1377. [Google Scholar]
- Hosseini, M.; Geissen, V.; González-Pelayo, O. Effects of fire occurrence and recurrence on nitrogen and phosphorus losses by overland flow in maritime pine plantations in north-central Portugal. Geoderma 2017, 289, 97–106. [Google Scholar] [CrossRef]
- Shen, Z.Y. Effects of Several Key Factors on the Migration Mechanism of Bromine and Phosphorus in Red Soil with Runoff. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2014. [Google Scholar]
- Du, X.Y.; Liang, Y.Z.; Xia, Z.R.; Xia, D.; Xu, W.N.; Wang, Y.K. Soil nutrient loss characteristic of gravel soil slope on different vegetation patterns. J. Soil Water Conserv. 2017, 31, 61–67. [Google Scholar]
- Chen, X.B.; Wang, K.Q. Characteristics study of nitrogen and phosphorus runoff loss in different bamboo forests. For. Resour. Manag. 2012, 6, 105–111. [Google Scholar]
- Yang, S.; Yin, Z.; Zheng, Z.C.; Li, T.X. Characteristics of natural rainfall and sediment yield of sloping cropland of the yellow soil area in Sichuan during corn growth season. J. Soil Water Conserv. 2016, 30, 7–12. [Google Scholar]
- Zhang, X.Q.; Gu, L.B.; Zhang, K.L.; Yang, G.X.; Gu, Z.K. Impacts of slope gradient on runoff and sediment in northwest Guizhou. J. Soil Water Conserv. 2015, 29, 15–22. [Google Scholar]
- Ai, N.; Wei, T.X.; Zhu, Q.K.; Gegeng, B.T.; Qin, W.; Zhao, X.K.; Zhao, W.J.; Ma, H.; Yang, Y.J. Factors affecting slope runoff and sediment yield in northern Shaanxi Province based on path analysis. J. Beijing For. Univ. 2015, 37, 77–84. [Google Scholar]
- Lin, J.K.; Li, Z.J.; Xu, H.C.; Jiang, A.X. Effects of rainfall factors on runoff and sediment yield of runoff plots with different land use patterns in Yimeng Mountainous area. Bull. Soil Water Conserv. 2016, 30, 7–12. [Google Scholar]
Plant Types | Stand Age (a) | Canopy Density | Slope (%) | Soil Bulk Density (g /cm3) | Soil Porosity (%) | pH | Organic Matter Content (g/kg) | Total N Content (g/kg) | Total P Content (g/kg) | Total K Content (g/kg) | Available Nitrogen (mg·kg−1) | Available Phosphorus (mg·kg−1) | Available Potassium (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sloping farmland (SF) | - | - | 34.43 | 1.45 | 35.68 | 5.1 | 1.36 | 0.87 | 0.98 | 27.46 | 66.92 | 2.79 | 112.82 |
Eucommia ulmoides forest (EUF) | 26 | 0.62 | 34.43 | 1.41 | 36.33 | 5.5 | 23.43 | 1.55 | 1.11 | 39.95 | 83.58 | 1.25 | 90.37 |
Vernicia fordii forest (VFF) | 35 | 0.65 | 44.53 | 1.33 | 38.24 | 5.2 | 15.36 | 1.00 | 0.06 | 38.54 | 58.26 | 2.81 | 117.89 |
Broad leaved secondary forest (BLMF) | 43 | 0.71 | 46.63 | 1.24 | 37.54 | 4.9 | 27.41 | 2.14 | 0.11 | 36.54 | 122.68 | 10.58 | 160.31 |
Wasteland (WL) | - | - | 38.39 | 1.27 | 40.21 | 5.0 | 40.76 | 2.38 | 0.09 | 35.64 | 72.66 | 12.27 | 55.49 |
Citrus reticulata forest (CRF) | 13 | 0.67 | 36.4 | 1.22 | 41.58 | 4.9 | 18.96 | 1.32 | 0.92 | 28.95 | 86.38 | 4.28 | 42.97 |
Pinus massoniana forest (PMF) | 40 | 0.75 | 46.63 | 1.18 | 42.36 | 4.4 | 27.22 | 1.11 | 0.38 | 34.77 | 83.86 | 0.73 | 27.38 |
Shrub (SR) | - | 0.99 | 40.40 | 1.03 | 47.23 | 5.0 | 13.96 | 0.90 | 0.09 | 37.54 | 56.30 | 3.06 | 60.24 |
Coniferous and broad-leaved mixed forest (CBMF) | 13 | 0.85 | 36.40 | 1.05 | 45.68 | 4.9 | 14.65 | 0.95 | 0.64 | 41.24 | 57.40 | 3.80 | 64.12 |
Broad-leaf mixed forest (BMF) | 13 | 0.88 | 36.40 | 1.02 | 46.35 | 4.8 | 16.92 | 1.29 | 0.68 | 26.26 | 82.88 | 0.61 | 62.93 |
Plant Types | 2007 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|
Sloping farmland (SF) | 9.36 | 10.82 | 26.77 | 47.30 | 18.78 | 20.13 | 15.68 | 14.16 | 15.55 | 27.15 | 25.19 |
Eucommia ulmoides forest (EUF) | 20.24 | 18.73 | 25.47 | 10.94 | 17.27 | 14.78 | 16.35 | 14.78 | 24.16 | 13.40 | 13.84 |
Vernicia fordii forest (VFF) | 21.41 | 32.09 | 10.00 | 12.94 | 8.99 | 14.08 | 28.62 | 31.02 | 16.55 | 12.98 | 13.44 |
Broad leaved secondary forest (BLMF) | 5.98 | 9.58 | 10.10 | 9.50 | 15.15 | 11.30 | 10.01 | 7.72 | 13.61 | 16.15 | 16.10 |
Wasteland (WL) | 12.49 | 2.52 | 8.79 | 1.96 | 14.11 | 13.98 | 7.33 | 10.37 | 5.40 | 2.87 | 2.70 |
Citrus reticulata forest (CRF) | 11.40 | 5.19 | 5.20 | 5.44 | 11.91 | 11.06 | 7.54 | 8.41 | 9.97 | 8.59 | 9.01 |
Pinus massoniana forest (PMF) | 10.36 | 9.95 | 6.97 | 5.18 | 6.59 | 6.25 | 5.90 | 6.54 | 5.85 | 8.21 | 8.66 |
Shrub (SR) | 0.40 | 8.97 | 3.44 | 5.10 | 3.86 | 4.71 | 7.25 | 5.18 | 7.12 | 8.74 | 9.29 |
Coniferous and broad-leaved mixed forest (CBMF) | 3.14 | 0.84 | 2.06 | 0.76 | 2.42 | 2.81 | 0.31 | 0.83 | 1.23 | 1.28 | 1.23 |
Broadleaf mixed forest (BMF) | 5.21 | 1.31 | 1.19 | 0.88 | 0.92 | 0.89 | 1.01 | 1.01 | 0.54 | 0.62 | 0.56 |
Plant Types | 2007 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|
Sloping farmland (SF) | 185.60 | 105.20 | 873.80 | 857.00 | 745.50 | 684.00 | 246.50 | 275.50 | 335.40 | 256.34 | 210.54 |
Eucommia ulmoides forest (EUF) | 401.13 | 182.00 | 831.40 | 198.20 | 685.60 | 502.00 | 257.08 | 287.50 | 521.00 | 126.50 | 115.65 |
Vernicia fordii forest (VFF) | 424.30 | 311.90 | 326.50 | 234.50 | 356.80 | 478.50 | 450.00 | 603.50 | 357.00 | 122.54 | 112.34 |
Broad leaved secondary forest (BLMF) | 118.60 | 93.10 | 329.70 | 172.20 | 601.20 | 383.90 | 157.30 | 150.20 | 293.60 | 152.50 | 134.56 |
Wasteland (WL) | 247.60 | 24.50 | 286.90 | 35.50 | 559.90 | 474.80 | 115.30 | 201.70 | 116.50 | 27.10 | 22.56 |
Citrus reticulata forest (CRF) | 225.88 | 50.40 | 169.70 | 98.50 | 472.70 | 375.92 | 118.50 | 163.60 | 215.00 | 81.10 | 75.33 |
Pinus massoniana forest (PMF) | 205.36 | 96.70 | 227.40 | 93.90 | 261.60 | 212.50 | 92.80 | 127.20 | 126.20 | 77.50 | 72.35 |
Shrub (SR) | 8.00 | 87.20 | 112.30 | 92.50 | 153.10 | 159.96 | 114.00 | 100.80 | 153.60 | 82.50 | 77.65 |
Coniferous and broad-leaved mixed forest (CBMF) | 62.15 | 8.20 | 67.20 | 13.80 | 96.10 | 95.50 | 4.80 | 16.20 | 26.60 | 12.10 | 10.24 |
Broadleaf mixed forest (BMF) | 103.34 | 12.70 | 38.80 | 15.90 | 36.70 | 30.40 | 15.90 | 19.60 | 11.60 | 5.90 | 4.65 |
Plant Types | 2007 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|
Sloping farmland (SF) | 32.60 | 8.67 | 48.00 | 35.00 | 45.00 | 43.00 | 26.13 | 54.00 | 56.00 | 43.07 | 33.65 |
Eucommia ulmoides forest (EUF) | 9.02 | 1.90 | 7.55 | 2.45 | 14.01 | 5.42 | 4.27 | 4.75 | 11.22 | 1.64 | 1.47 |
Vernicia fordii forest (VFF) | 12.11 | 5.30 | 26.71 | 2.25 | 34.40 | 34.30 | 11.61 | 13.36 | 16.14 | 6.33 | 5.77 |
Broad leaved secondary forest (BLMF) | 6.46 | 5.24 | 17.43 | 8.27 | 32.61 | 22.83 | 8.43 | 21.63 | 17.45 | 6.71 | 5.89 |
Wasteland (WL) | 2.27 | 0.21 | 3.33 | 0.52 | 7.20 | 4.75 | 1.36 | 2.64 | 1.58 | 0.22 | 0.22 |
Citrus reticulata forest (CRF) | 41.35 | 3.54 | 3.16 | 2.60 | 33.37 | 10.24 | 4.55 | 13.87 | 11.30 | 2.06 | 1.88 |
Pinus massoniana forest (PMF) | 7.84 | 1.31 | 2.86 | 1.72 | 5.42 | 4.82 | 2.13 | 3.48 | 2.78 | 2.05 | 1.88 |
Shrub (SR) | 0.09 | 0.80 | 1.00 | 1.06 | 1.84 | 1.92 | 1.85 | 2.06 | 2.06 | 1.16 | 1.05 |
Coniferous and broad-leaved mixed forest (CBMF) | 3.49 | 0.12 | 0.64 | 0.15 | 0.95 | 15.06 | 0.02 | 0.39 | 0.54 | 0.12 | 0.06 |
Broadleaf mixed forest (BMF) | 10.58 | 0.29 | 0.59 | 0.18 | 0.40 | 0.24 | 0.17 | 0.36 | 0.16 | 0.06 | 0.02 |
Plant Types | 2007 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|
Sloping farmland (SF) | 25.91 | 31.66 | 43.14 | 64.58 | 25.69 | 30.16 | 43.17 | 46.34 | 46.97 | 67.91 | 64.86 |
Eucommia ulmoides forest (EUF) | 7.17 | 6.93 | 6.78 | 4.52 | 8.00 | 3.80 | 7.05 | 4.08 | 9.41 | 2.59 | 2.83 |
Vernicia fordii forest (VFF) | 9.63 | 19.36 | 24.01 | 4.15 | 19.64 | 24.06 | 19.18 | 11.46 | 13.54 | 9.98 | 11.12 |
Broad leaved secondary forest (BLMF) | 5.13 | 19.13 | 15.66 | 15.25 | 18.61 | 16.01 | 13.93 | 18.56 | 14.63 | 10.58 | 11.35 |
Wasteland (WL) | 1.80 | 0.77 | 3.00 | 0.95 | 4.11 | 3.33 | 2.25 | 2.26 | 1.33 | 0.35 | 0.43 |
Citrus reticulata forest (CRF) | 32.87 | 12.93 | 2.84 | 4.79 | 19.05 | 7.18 | 7.52 | 11.90 | 9.48 | 3.25 | 3.62 |
Pinus massoniana forest (PMF) | 6.23 | 4.79 | 2.57 | 3.18 | 3.09 | 3.38 | 3.53 | 2.98 | 2.33 | 3.23 | 3.61 |
Shrub (SR) | 0.07 | 2.91 | 0.90 | 1.96 | 1.05 | 1.35 | 3.06 | 1.76 | 1.72 | 1.82 | 2.03 |
Coniferous and broad-leaved mixed forest (CBMF) | 2.77 | 0.43 | 0.58 | 0.28 | 0.54 | 10.56 | 0.04 | 0.33 | 0.45 | 0.19 | 0.12 |
Broadleaf mixed forest (BMF) | 8.41 | 1.07 | 0.53 | 0.33 | 0.23 | 0.17 | 0.27 | 0.31 | 0.14 | 0.10 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Zhou, X.; Rubinato, M.; Li, G.; Tian, Y.; Zhou, J. Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China. Forests 2020, 11, 329. https://doi.org/10.3390/f11030329
Luo J, Zhou X, Rubinato M, Li G, Tian Y, Zhou J. Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China. Forests. 2020; 11(3):329. https://doi.org/10.3390/f11030329
Chicago/Turabian StyleLuo, Jia, Xiaoling Zhou, Matteo Rubinato, Guijing Li, Yuxin Tian, and Jinxing Zhou. 2020. "Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China" Forests 11, no. 3: 329. https://doi.org/10.3390/f11030329
APA StyleLuo, J., Zhou, X., Rubinato, M., Li, G., Tian, Y., & Zhou, J. (2020). Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China. Forests, 11(3), 329. https://doi.org/10.3390/f11030329