Cell Wall Bulking by Maleic Anhydride for Wood Durability Improvement
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experiment Materials
2.2. Experiment Methods
2.2.1. Preparation of Modified Wood
2.2.2. Characterization and Properties Evaluation of the Modified Wood
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, J.W.; Chen, C.J.; Zhu, S.Z.; Zhu, M.W.; Dai, J.Q.; Ray, U.; Li, Y.J.; Kuang, Y.D.; Li, Y.F.; Quispe, N.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228. [Google Scholar] [CrossRef]
- Zang, D.K. Cerasus laoshanensis (Rosaceae), a new species from Shandong, China. Ann. Bot. Fenn. 2017, 54, 135–137. [Google Scholar] [CrossRef]
- Liu, J.W.; Zhang, R.H.; Zhang, G.C.; Guo, J.; Dong, Z. Effects of soil drought on photosynthetic traits and antioxidant enzyme activities in Hippophae rhamnoides seedlings. J. Forestry Res. 2017, 28, 255–263. [Google Scholar] [CrossRef]
- Mao, A.; Xu, W.; Xi, E.; Li, Q.; Wan, H. Evaluation of phenol-formaldehyde resins modified and blended with pyrolysis bio-oil for plywood. Forest Prod. J. 2018, 68, 113–119. [Google Scholar]
- Li, Q.; Li, M.; Chen, C.; Cao, G.M.; Mao, A.; Wan, H. Adhesives from polymeric methylene diphenyl diisocyanate resin and recycled polyols for plywood. Forest Prod. J. 2017, 67, 275–282. [Google Scholar] [CrossRef]
- Tian, N.N.; Lu, F.D.; Joshi, O.; Poudyal, N. Segmenting landowners of shandong, china based on their attitudes towards forest certification. Forests 2018, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.C.; Dong, Y.H.; Yue, X.X.; Hu, J.F.; Jiang, S.H.; Xu, H.F.; Wang, Y.C.; Su, M.Y.; Zhang, J.; Zhang, Z.Y.; et al. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environ. 2019, 42, 2090–2104. [Google Scholar] [CrossRef]
- Zhu, W.R.; Sang, Y.L.; Zhu, Q.L.; Duan, B.L.; Wang, Y.P. Morphology and longevity of different-order fine roots in poplar (Populus x euramericana) plantations with contrasting forest productivities. Can. J. Forest Res. 2018, 48, 611–620. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhao, L.Y.; Xu, Z.D.; Yu, X.Y. Transcriptome sequencing of Paeonia suffruticosa ‘Shima Nishiki’ to identify differentially expressed genes mediating double-color formation. Plant Physiol. Biochem. 2018, 123, 114–124. [Google Scholar] [CrossRef]
- Gai, Y.P.; Li, Y.Q.; Guo, F.Y.; Yuan, C.Z.; Mo, Y.Y.; Zhang, H.L.; Wang, H.; Ji, X.L. Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci. Rep. 2014, 4, 5378. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.J.; Qin, R.L.; Liu, Z.; Liu, C.R.; Gai, Y.P.; Ji, X.L. Expression and functional analysis of a PR-1 Gene, MuPR1, involved in disease resistance response in mulberry (Morus multicaulis). J. Plant Interact. 2019, 14, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.J.; Zhao, M.Y.; Jin, J.F.; Zhao, L.Y.; Xu, Z.D. Anthocyanins and their biosynthetic genes in three novel-colored Rosa rugosa cultivars and their parents. Plant Physiol. Biochem. 2018, 129, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.C.; Dong, Y.H.; Yue, X.X.; Chen, X.L.; He, N.B.; Hu, J.F.; Jiang, S.H.; Xu, H.F.; Wang, Y.C.; Su, M.Y.; et al. MdCOL4 Interaction Mediates Crosstalk Between UV-B and High Temperature to Control Fruit Coloration in Apple. Plant Cell Physiol. 2019, 60, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.M.; Bian, Y.; Hou, S.H.; Li, X.G. Sugar transport played a more important role than sugar biosynthesis in fruit sugar accumulation during Chinese jujube domestication. Planta 2018, 248, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Mao, A.; Shi, S.Q.; Steele, P. Flakeboard bonded with polymeric diphenylmethane diisocyanate/bio-oil adhesive systems. Forest Prod. J. 2011, 61, 240–245. [Google Scholar] [CrossRef]
- Liu, J.G.; Han, X.; Yang, T.; Cui, W.H.; Wu, A.M.; Fu, C.X.; Wang, B.C.; Liu, L.J. Genome-wide transcriptional adaptation to salt stress in Populus. BMC Plant Biol. 2019, 19, 367. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhu, H.; Wang, L.; Bi, S.S.; Zhang, Z.H.; Meng, S.Y.; Zhang, Y.; Wang, H.T.; Song, C.D.; Ma, F.Y. The effects of magnetic treatment on nitrogen absorption and distribution in seedlings of Populus x euramericana ’Neva’ under NaCl stress. Sci. Rep. 2019, 9, 10025. [Google Scholar] [CrossRef]
- Mao, P.L.; Guo, L.M.; Gao, Y.X.; Qi, L.; Cao, B.H. Effects of seed size and sand burial on germination and early growth of seedlings for coastal Pinus thunbergii Parl. in the northern shandong peninsula, China. Forests 2019, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Mao, A.; Shi, S.Q. Dynamic mechanical properties of polymeric diphenylmethane diisocyanate/bio-oil adhesive system. Forest Prod. J. 2012, 62, 201–206. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Wang, H.; Qin, R.L.; Fang, L.J.; Liu, Z.; Yuan, S.S.; Gai, Y.P.; Ji, X.L. Characterization of NPR1 and NPR4 genes from mulberry (Morus multicaulis) and their roles in development and stress resistance. Physiol. Plant. 2019, 167, 302–316. [Google Scholar] [CrossRef]
- Guo, J.; Wang, F.; Zhang, X.S. Knockdown expression of the B-type cyclin gene Orysa;CycB1;1 leads to triploid rice. J. Plant Biol. 2014, 57, 43–47. [Google Scholar] [CrossRef]
- Gai, Y.P.; Han, X.J.; Li, Y.Q.; Yuan, C.Z.; Mo, Y.Y.; Guo, F.Y.; Liu, Q.X.; Ji, X.L. Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease. Plant Cell Environ. 2014, 37, 1474–1490. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Dong, Y.F.; Xu, T.; Wang, Y.P.; Wang, H.T.; Duan, B.L. Root order-dependent seasonal dynamics in the carbon and nitrogen chemistry of poplar fine roots. New Forests 2017, 48, 587–607. [Google Scholar] [CrossRef]
- Zhai, W.Y.; Zhao, Y.Z.; Lian, X.R.; Yang, M.M.; Lu, F.D. Management planning of fast-growing plantations based on a bi-level programming model. Forest Policy Econ. 2014, 38, 173–177. [Google Scholar] [CrossRef]
- An, H.S.; Yang, K.Q. Resistance gene analogs in walnut (Juglans regia) conferring resistance to Colletotrichum gloeosporioides. Euphytica 2014, 197, 175–190. [Google Scholar] [CrossRef]
- Sui, X.M.; Zhao, M.Y.; Han, X.; Zhao, L.Y.; Xu, Z.D. RrGT1, a key gene associated with anthocyanin biosynthesis, was isolated from Rosa rugosa and identified via overexpression and VIGS. Plant Physiol. Biochem. 2019, 135, 19–29. [Google Scholar] [CrossRef]
- Li, Y.F.; Liu, Y.X.; Wang, X.M.; Wu, Q.L.; Yu, H.P.; Li, J. Wood-polymer composites prepared by the in-situ polymerization of monomers within wood. J. Appl. Polym. Sci. 2011, 119, 3207–3216. [Google Scholar] [CrossRef]
- Du, S.H.; Sang, Y.L.; Liu, X.J.; Xing, S.Y.; Li, J.H.; Tang, H.X.; Sun, L.M. Transcriptome profile analysis from different sex types of Ginkgo biloba L. Front. Plant Sci. 2016, 7, 871. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Gao, P.; Xu, H.D.; Li, C.; Niu, X. Decomposition dynamics and ecological stoichiometry of Quercus acutissima and Pinus densiflora litter in the grain to green program area of northern China. J. For. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Dong, X.Y.; Lu, Z.G.; Jia, W.D.; Liu, Y.X. Effect of polymer in situ synthesized from methyl methacrylate and styrene on the morphology, thermal behavior and durability of wood. J. Appl. Polym. Sci. 2013, 128, 13–20. [Google Scholar]
- Dong, X.Y.; Zhuo, X.; Wei, J.; Zhang, G.; Li, Y.F. Wood-based nanocomposite derived by in-situ formation of organic-inorganic hybrid polymer within wood via a sol-gel method. ACS Appl. Mater. Interfaces 2017, 9, 9070–9078. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Li, C.R.; Leslie, C.A.; Sun, Q.R.; Guo, X.F.; Yang, K.Q. Molecular cloning and heterologous expression analysis of JrVTE1 gene from walnut (Juglans regia). Mol. Breeding 2015, 35, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.F.; Liu, Z.B.; Dong, X.Y.; Fu, Y.L.; Liu, Y.X. Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. Int. Biodeter. Biodegr. 2013, 84, 401–406. [Google Scholar] [CrossRef]
- Li, Y.F.; Wu, Q.L.; Li, J.; Liu, Y.X.; Wang, X.M.; Liu, Z.B. Improvement of dimensional stability of wood via combination treatment: Swelling with maleic anhydride and grafting with glycidyl methacrylate and methyl methacrylate. Holzforschung 2012, 66, 59–66. [Google Scholar] [CrossRef]
- Gai, Y.P.; Zhao, Y.N.; Zhao, H.N.; Yuan, C.Z.; Yuan, S.S.; Li, S.; Zhu, B.S.; Ji, X.L. The Latex Protein MLX56 from Mulberry (Morus multicaulis) Protects Plants against Insect Pests and Pathogens. Front. Plant Sci. 2017, 8, 1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.X.; Gao, K.X.; Xing, X.S.; Yang, R.; Zhang, S.Y.; Du, Z.L.; Guo, J.; Liu, X. A recommended rate for application of Chaetomium globosum ND35 fungus fertilizer on poplar plantations in China. J. Forestry Res. 2018, 29, 933–941. [Google Scholar] [CrossRef]
- Mai, C.; Militz, H. Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds—A review. Wood Sci. Technol. 2004, 37, 453–461. [Google Scholar] [CrossRef]
- Iwamoto, Y.; Itoh, T. Vapor phase reaction of wood with maleic anhydride (I): Dimensional stability and durability of treated wood. J. Wood Sci. 2005, 51, 595–600. [Google Scholar] [CrossRef]
- Hosseinpourpia, R.; Mai, C. Mode of action of brown rot decay resistance of acetylated wood: Resistance to Fenton’s reagent. Wood Sci. Technol. 2016, 50, 413–426. [Google Scholar] [CrossRef]
- Shukla, S.R.; Pascal, K.D. Swelling of polyvinyl alcohol, melamine and urethane treated southern pine wood. Eur. J. Wood Wood Prod. 2010, 68, 161–165. [Google Scholar] [CrossRef]
- Mubarok, M.; Militz, H.; Dumarçay, S.; Gérardin, P. Beech wood modification based on in situ esterification with sorbitol and citric acid. Wood Sci. Technol. 2020, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Sint, K.M.; Adamopoulos, S.; Koch, G.; Hapla, F.; Militz, H. Impregnation of bombax ceiba and bombax insigne wood with a N-methylol melamine compound. Wood Sci. Technol. 2013, 47, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Gai, Y.P.; Yuan, S.S.; Zhao, Y.N.; Zhao, H.N.; Zhang, H.L.; Ji, X.L. A novel LncRNA, MuLnc1, associated with environmental stress in Mulberry (Morus multicaulis). Front. Plant Sci. 2018, 9, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, H. Preparation and utilization of esterified woods bearing carboxyl groups. Wood Sci. Technol. 1987, 21, 75–88. [Google Scholar]
- Rozman, H.D.; Kumar, R.N.; Abdul Khalil, H.P.S.; Abusamah, A.; Abu, R. Chemical modification of wood with maleic anhydride and subsequent copolymerization with diallyl phthalate. J. Wood Chem. Technol. 1997, 17, 419–433. [Google Scholar] [CrossRef]
- Roussel, C.; Marchetti, V.; Lemor, A.; Wozniak, E.; Loubinoux, B.; Gérardin, P. Chemical modification of wood by polyglycerol/maleic anhydride treatment. Holzforschung 2001, 55, 57–62. [Google Scholar] [CrossRef]
- Adebawo, F.; Sadeghifar, H.; Tilotta, D.; Jameel, H.; Liu, Yu.; Lucia, L.A. Spectroscopic interrogation of the acetylation selectivity of hardwood biopolymers. Starch 2019, 71, 1900086. [Google Scholar] [CrossRef]
- Hunt, C.G.; Zelinka, S.L.; Frihart, C.R.; Linda, L.; Daniel, Y.; Sophie-Charlotte, G.; Vogt, S.; Jakes, J.E. Acetylation increases relative humidity threshold for ion transport in wood cell walls-a means to understanding decay resistance. Int. Biodeter. Biodegr. 2018, 133, 230–237. [Google Scholar] [CrossRef]
- Makoto, O.; Atsushi, K.; Kcntaro, S.; Noriko, H.; Mitsuro, I. Characterization of acetylated wood decayed by brown-rot and white-rot fungi. J. Wood Sci. 1999, 45, 69–75. [Google Scholar]
- Pelit, H.; Yalçın, M. Resistance of mechanically densified and thermally post-treated pine sapwood to wood decay fungi. J. Wood Sci. 2017, 63, 514–522. [Google Scholar] [CrossRef]
- Li, Y.F.; Dong, X.Y.; Liu, Y.X.; Li, J.; Wang, F.H. Improvement of decay resistance of wood via combination treatment on wood cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. Int. Biodeter. Biodegr. 2011, 65, 1087–1094. [Google Scholar] [CrossRef]
Treatment Method | Procedure | Weight Loss Rates (%) | References | |
---|---|---|---|---|
White-Rot Fungus | Brown-Rot Fungus | |||
Acetylated treatment on wood | Acetic anhydride treatment with weight percent gain of ~10% | ~8 | ~71 | Ref. [49]: Journal of Wood Science, 1999, 45: 69-75. |
Thermal modification on wood | Thermal treatment: 212 °C for 2 h | 73 | 67 | Ref. [50]: Journal of Wood Science, 2017, 63: 514-522. |
Polymethylmethacrylate (PMMA) immersion upon wood | PMMA impregnation with weight percent gain of ~59% | ~6 | ~20 | Ref. [51]: International Biodeterioration & Biodegradation, 2011, 65: 1087-1094. |
Maleic anhydride treatment on wood | Maleic anhydride treatment with weight percent gain of ~9% | 5.13 | 23.95 | Our work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Xu, D.; Li, C.; Ma, Y.; Dai, X.; Pan, X.; Fan, J.; He, Z.; Gui, S.; Dong, X.; et al. Cell Wall Bulking by Maleic Anhydride for Wood Durability Improvement. Forests 2020, 11, 367. https://doi.org/10.3390/f11040367
He M, Xu D, Li C, Ma Y, Dai X, Pan X, Fan J, He Z, Gui S, Dong X, et al. Cell Wall Bulking by Maleic Anhydride for Wood Durability Improvement. Forests. 2020; 11(4):367. https://doi.org/10.3390/f11040367
Chicago/Turabian StyleHe, Mingming, Dandan Xu, Changgui Li, Yuzhen Ma, Xiaohan Dai, Xiya Pan, Jilong Fan, Zaixin He, Shihan Gui, Xiaoying Dong, and et al. 2020. "Cell Wall Bulking by Maleic Anhydride for Wood Durability Improvement" Forests 11, no. 4: 367. https://doi.org/10.3390/f11040367
APA StyleHe, M., Xu, D., Li, C., Ma, Y., Dai, X., Pan, X., Fan, J., He, Z., Gui, S., Dong, X., & Li, Y. (2020). Cell Wall Bulking by Maleic Anhydride for Wood Durability Improvement. Forests, 11(4), 367. https://doi.org/10.3390/f11040367