Genetic Diversity and Evolutionary Relationships of Chinese Pepper Based on nrDNA Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Molecular Procedures
2.3. Data Analyses
2.3.1. Genetic Diversity
2.3.2. Genetic Structure and Evolutionary Analyses
2.3.3. Inference of Demographic History
3. Results
3.1. Sequence Characteristics and Haplotype Distribution
3.2. Genetic Diversity and Genetic Differentiation
3.3. Genetic Structure
3.4. Demographic Trends
4. Discussion
4.1. Genetic Diversity and Genetic Differentiation
4.2. Demographic Trends Were Largely Shaped by Pleistocene Climate Oscillations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kubitzki, K.; Kallunki, J.; Duretto, M.; Wilson, P. The families and genera of vascular plants, flowering plants eudicots: Sapindales, Cucurbitales, Myrtaceae. In Rutaceae; Kubitzki, K., Ed.; Springer: Berlin, Germany, 2011; pp. 276–356. [Google Scholar]
- Zhang, M.; Wang, J.; Zhu, L.; Li, T.; Jiang, W.; Zhou, J.; Peng, W.; Wu, C. Zanthoxylum bungeanum Maxim. (Rutaceae): A systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int. J. Mol. Sci. 2017, 18, 2172. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Huang, Y.; Ji, X.; Su, T.; Zhou, Z. Continuous existence of Zanthoxylum (Rutaceae) in Southwest China since the Miocene. Quatern. Int. 2016, 392, 224–232. [Google Scholar] [CrossRef]
- Matthias, B.; Stark, T.D.; Corinna, D.; Sofie, L.S.; Thomas, H. All-trans-configuration in Zanthoxylum alkylamides swaps the tingling with a numbing sensation and diminishes salivation. J. Agric. Food Chem. 2014, 62, 2479–2488. [Google Scholar]
- Xiong, Q.; Dawen, S.; Yamamoto, H.; Mizuno, M. Alkylamides from pericarps of Zanthoxylum bungeanum. Phytochemistry 1997, 46, 1123–1126. [Google Scholar] [CrossRef]
- Yang, X. Aroma constituents and alkylamides of red and green Huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium). J. Agric. Food Chem. 2008, 56, 1689–1696. [Google Scholar] [CrossRef]
- Zeng, J. The cultivated origin and distribution of Chinese pepper. Agric. Hist. China 2000, 19, 68–75. (In Chinese) [Google Scholar]
- Deng, S.; Rong, H.; Tu, H.; Zheng, B.; Mu, X.; Zhu, L.; Zhou, X.; Peng, W.; Wu, M.; Zhang, E. Molecular basis of neurophysiological and antioxidant roles of Szechuan pepper. Biomed. Pharmacother. 2019, 112, 108696. [Google Scholar] [CrossRef]
- Purohit, S.; Jugran, A.K.; Bhatt, I.D.; Palni, L.M.S.; Bhatt, A.; Nandi, S.K. In vitro approaches for conservation and reducing juvenility of Zanthoxylum armatum DC: An endangered medicinal plant of Himalayan region. Trees Struct. Funct. 2017, 31, 1101–1108. [Google Scholar] [CrossRef]
- Patiño, L.; Prieto, R.; Cuca, S. Zanthoxylum genus as potential source of bioactive compounds. In Bioactive Compounds in Phytomedicine; Rasooli, I., Ed.; InTech: Rijeka, Croatia, 2012; pp. 185–218. [Google Scholar]
- Cheng, J.; Lee, X.; Theng, B.K.G.; Zhang, L.; Fang, B.; Li, F. Biomass accumulation and carbon sequestration in an age-sequence of Zanthoxylum bungeanum plantations under the Grain for Green Program in karst regions, Guizhou province. Agric. For. Meteorol. 2015, 203, 88–95. [Google Scholar] [CrossRef]
- Feng, S.; Liu, Z.; Lv, C.; Na, H.; Yang, T.; Wei, A. Phylogenetic relationships among cultivated Zanthoxylum species in China based on cpDNA markers. Tree Genet. Genomes 2016, 12, 45. [Google Scholar] [CrossRef]
- Medhi, K.; Sarmah, D.K.; Deka, M.; Bhau, B.S. High gene flow and genetic diversity in three economically important Zanthoxylum Spp. of upper Brahmaputra valley zone of NE India using molecular markers. Meta Gene 2014, 2, 706–721. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, Z.; Xue, H.; Wang, D.; Sun, Y. RAPD analysis of the germplasm resources of Zanthoxylum bungeanum. J. Northwest For. Univ. 2009, 26, 96–100. (In Chinese) [Google Scholar]
- Feng, S.; Yang, T.; Li, X.; Chen, L.; Liu, Z.; Wei, A. Genetic relationships of Chinese prickly ash as revealed by ISSR markers. Biologia 2015, 70, 45–51. [Google Scholar] [CrossRef]
- Gupta, D.D.; Mandi, S.S. Species-specific AFLP markers for authentication of Zanthoxylum acanthopodium & Zanthoxylum oxyphyllum. J. Med. Plants Stud. 2013, 1, 1–9. [Google Scholar]
- Kim, Y.M.; Jo, A.; Jeong, J.H.; Kwon, Y.R.; Kim, H.B. Development and characterization of microsatellite primers for Zanthoxylum schinifolium (Rutaceae). Appl. Plant Sci. 2017, 5, 1600145. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhao, L.; Liu, Z.; Liu, Y.; Yang, T.; Wei, A. De novo transcriptome assembly of Zanthoxylum bungeanum using Illumina sequencing for evolutionary analysis and simple sequence repeat marker development. Sci. Rep. 2017, 7, 16754. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Yoshida, T.; Kamiya, K.; Yahara, T.; Tachida, H. Development and characterization of microsatellite markers in Zanthoxylum ailanthoides (Rutaceae). Mol. Ecol. Resour. 2009, 9, 667–669. [Google Scholar] [CrossRef]
- Yoshida, T.; Tamekuni, M.; Yahara, T.; Inomata, N.; Tachida, H. Demographic history of a common pioneer tree, Zanthoxylum ailanthoides, reconstructed using isolation-with-migration model. Tree Genet. Genomes 2014, 10, 1213–1222. [Google Scholar] [CrossRef]
- Yoshida, T.; Nagai, H.; Yahara, T.; Tachida, H. Genetic structure and putative selective sweep in the pioneer tree, Zanthoxylum ailanthoides. J. Plant Res. 2010, 123, 607–616. [Google Scholar] [CrossRef]
- Lee, H.J.; Koo, H.J.; Lee, J.; Lee, S.; Lee, D.Y.; Giang, V.N.L.; Kim, M.; Shim, H.; Park, J.Y.; Yoo, K. Authentication of Zanthoxylum species based on integrated analysis of complete chloroplast genome sequences and metabolite profiles. J. Agric. Food Chem. 2017, 65, 10350–10359. [Google Scholar] [CrossRef]
- Han, J.; Pang, X.; Liao, B.; Yao, H.; Song, J.; Chen, S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci. Rep. 2016, 6, 18723. [Google Scholar] [CrossRef]
- Schultz, J.; Maisel, S.; Gerlach, D.; Muller, T.; Wolf, M. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 2005, 11, 361–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Li, J.; Conran, J.G.; Li, X. Phylogeny of Neolitsea (Lauraceae) inferred from Bayesian analysis of nrDNA ITS and ETS sequences. Plant Syst. Evol. 2007, 269, 203–221. [Google Scholar] [CrossRef]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Zhao, L.; Feng, S.; Tian, J.; Wei, A.; Yang, T. Internal transcribed spacer 2 (ITS2) barcodes: A useful tool for identifying Chinese Zanthoxylum. Appl. Plant Sci. 2018, 6, e1157. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Rozas, J.; Ferrermata, A.; Sanchezdelbarrio, J.C.; Guiraorico, S.; Librado, P.; Ramosonsins, S.E.; Sanchezgracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Clement, M.J.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [Green Version]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Ramosonsins, S.E.; Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 2002, 19, 2092–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heled, J.; Drummond, A.J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 2008, 8, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelhans, M.S.; Reichelt, N.; Groppo, M.; Paetzold, C.; Wen, J. Phylogeny and biogeography of the pantropical genus Zanthoxylum and its closest relatives in the proto-Rutaceae group (Rutaceae). Mol. Phylogenet. Evol. 2018, 126, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Hamrick, J.L.; Godt, M.J.W.; Shermanbroyles, S. Factors influencing levels of genetic diversity in woody plant species. New For. 1992, 6, 95–124. [Google Scholar] [CrossRef]
- Pusadee, T.; Jamjod, S.; Chiang, Y.; Rerkasem, B.; Schaal, B.A. Genetic structure and isolation by distance in a landrace of Thai rice. Proc. Natl. Acad. Sci. USA 2009, 106, 13880–13885. [Google Scholar] [CrossRef] [Green Version]
- Clegg, M.T.; Gaut, B.S.; Learn, G.H.; Morton, B.R. Rates and patterns of chloroplast DNA evolution. Proc. Natl. Acad. Sci. USA 1994, 91, 6795–6801. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Shi, Y.; Wang, J. Comparison between quaternary glaciations in China and the marine oxygen isotope stage (MIS): An improved schema. Acta Geogr. Sin. 2011, 66, 867–884. (In Chinese) [Google Scholar]
- Wolfe, K.H.; Li, W.H.; Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 1987, 84, 9054–9058. [Google Scholar] [CrossRef] [Green Version]
- Hoen, A.G.; Margos, G.; Bent, S.J.; Diuk-Wasser, M.A.; Barbour, A.; Kurtenbach, K.; Fish, D. Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc. Natl. Acad. Sci. USA 2009, 106, 15013–15018. [Google Scholar] [CrossRef] [Green Version]
- Mazet, O.; Rodriguez, W.; Chikhi, L. Demographic inference using genetic data from a single individual: Separating population size variation from population structure. Theor. Popul. Biol. 2015, 104, 46–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, R.; Chikhi, L.; Siegismund, H.R. The confounding effect of population structure on Bayesian Skyline Plot inferences of demographic history. PLoS ONE 2013, 8, e62992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Province | Indiv. | Haplotypes (No. of Haplotypes) | Hd | Pi |
---|---|---|---|---|---|
Z. bungeanum | Shaanxi | 30 | H1(2),H4(5),H7(11),H17(2),H18(3), H26(1),H27(2),H28(4) | 0.8190 | 0.0207 |
Henan | 4 | H2(1),H3(1),H10(1),H11(1) | 1.0000 | 0.0208 | |
Yunnan | 6 | H7(3),H12(1),H19(2) | 0.7330 | 0.0099 | |
Gansu | 20 | H4(7),H5(3),H15(2),H16(1), H21(1),H22(1),H23(1),H24(1),H25(3) | 0.8710 | 0.0267 | |
Shandong | 5 | H6(2),H8(1),H9(2) | 0.8000 | 0.0095 | |
Sichuan | 14 | H4(1),H7(8),H20(3),H21(2) | 0.6480 | 0.0075 | |
Shanxi | 2 | H13(1),H14(1) | 1.0000 | 0.0012 | |
Guizhou | 3 | H7(3) | 0.0000 | 0.0000 | |
total | 84 | H1(2),H2(1),H3(1),H4(13),H5(3), H6(2),H7(25),H8(1),H9(2),H10(1), H11(1),H12(1),H13(1), H14(1), H15(2),H16(1),H17(2),H18(3),H19(2), H20(3),H21(3),H22(1),H23(1),H24(1), H25(3),H26(1),H27(2),H28(4) | 0.8830 | 0.0221 | |
Z. armatum | Shaanxi | 6 | H29(5),H30(1) | 0.3330 | 0.0004 |
Yunnan | 2 | H31(2) | 0.0000 | 0.0000 | |
Sichuan | 4 | H29(1),H31(3) | 0.5000 | 0.0053 | |
Guizhou | 9 | H29(6),H31(3) | 0.5000 | 0.0053 | |
total | 21 | H29(12),H30(1),H31(8) | 0.5520 | 0.0053 | |
Total | 105 | H1(2),H2(1),H3(1),H4(13),H5(1),H6(2), H7(25), H8(1),H9(2),H10(1),H11(1), H12(1),H13(1), H14(1),H15(2),H16(1), H17(2),H18(3),H19(2),H20(3),H21(3), H22(1),H23(1),H24(1), H25(3),H26(1), H27(2),H28(4),H29(12),H30(1),H31(8) | 0.9080 | 0.0251 |
Species | Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variation (%) | F-Statistics |
---|---|---|---|---|---|---|
Z. bungeanum | Among provinces | 7 | 200.959 | 2.275Va | 22.97 | FST = 0.23*** |
Within province | 76 | 579.814 | 7.629Vb | 77.03 | ||
Z. armatum | Among provinces | 3 | 19.179 | 1.013Va | 40.23 | FST = 0.402** |
Within province | 17 | 25.583 | 1.505Vb | 59.77 | ||
Z. bungeanum versus Z. armatum | Among species | 1 | 327.512 | 9.027Va | 51.61 | FCT = 0.516** |
Among provinces within species | 10 | 220.138 | 1.954Vb | 11.17 | FSC = 0.231*** | |
Within province | 93 | 605.398 | 6.51Vc | 37.22 | FST = 0.628*** |
Z. armatum | Z. bungeanum | |
---|---|---|
Number of sequences | 21 | 84 |
Number of haplotypes | 3 | 28 |
Variable site (average number of pairwise differences) | 9 (4.476) | 83 (18.566) |
Demographic expansion | ||
τ | 0 (0, 0.57) | 16.406 (7.527, 50.82) |
Goodness-of-fit | 0.519 (0)/0.542 (0.933) | 0.021 (0.11)/0.029 (0.002) |
Spatial expansion | ||
τ | 9.674 (0,106.53) | 14.374 (8.607,36.498) |
Goodness-of-fit | 0.157 (0.042)/0.542 (0.452) | 0.014 (0.64)/0.029 (0.247) |
Constant population size | ||
τ | 0.59 | 6.016 |
Goodness-of-fit | 0.303 (0.018)/0.542 (0.995) | 0.025 (0.08)/0.029 (0.948) |
Tajima’s D | 2.678 (0.999) | 0.395 (0.566) |
Fu and Li’s Fs | 7.217 (0.991) | 2.441 (0.793) |
R2 | 0.249 (1) | 0.112 (0.729) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Niu, J.; Liu, Z.; Tian, L.; Wang, X.; Wei, A. Genetic Diversity and Evolutionary Relationships of Chinese Pepper Based on nrDNA Markers. Forests 2020, 11, 543. https://doi.org/10.3390/f11050543
Feng S, Niu J, Liu Z, Tian L, Wang X, Wei A. Genetic Diversity and Evolutionary Relationships of Chinese Pepper Based on nrDNA Markers. Forests. 2020; 11(5):543. https://doi.org/10.3390/f11050543
Chicago/Turabian StyleFeng, Shijing, Jinshuang Niu, Zhenshan Liu, Lu Tian, Xiangyuan Wang, and Anzhi Wei. 2020. "Genetic Diversity and Evolutionary Relationships of Chinese Pepper Based on nrDNA Markers" Forests 11, no. 5: 543. https://doi.org/10.3390/f11050543
APA StyleFeng, S., Niu, J., Liu, Z., Tian, L., Wang, X., & Wei, A. (2020). Genetic Diversity and Evolutionary Relationships of Chinese Pepper Based on nrDNA Markers. Forests, 11(5), 543. https://doi.org/10.3390/f11050543