The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Meteorological Data
2.4. Forest Cover Change Extraction
2.5. Seamless Image Mosaicking
2.6. Normalized Difference Vegetation Index (NDVI)
2.7. Land Surface Temperature (LST) Extraction from Landsat Imagery
2.7.1. Conversion of Digital Number (DN) to Spectral Radiance
2.7.2. Spectral Radiance to Brightness Temperature
- K1 = 607.76 W·m−2·sr−1·μm−1, K2 = 1260.56 (Landsat-5 TM);
- K1 = 666.09 W·−2·sr−1·μm−1, K2 = 1282.71 (Landsat-8 ETM+).
2.7.3. Generating LST for Landsat 5 and Landsat 8 (OLI)
2.7.4. LST Kelvin (K) to Degree Celsius (°C) Conversion
3. Results
3.1. Forest Cover Change in Perak
3.2. Forest Cover Change in Kedah
3.3. NDVI for Perak Forest Cover
3.4. NDVI for Kedah Forest Cover
3.5. Relationship between NDVI and Meteorological Factors
3.6. Spatial Distribution of LST and NDVI
4. Discussion
4.1. Forest Cover Changes and Analysis
4.2. Deforestation in Perak and Kedah
4.3. Relationship between LST and NDVI
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deng, Y.; Wang, S.; Bai, X.; Tian, Y.; Wu, L.; Xiao, J.; Chen, F.; Qian, Q. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci. Rep. 2018, 8, 641. [Google Scholar] [CrossRef]
- Culf, A.D.; Esteves, J.L.; Filho, A.O.M.; Da Rocha, H.R. Radiation, temperature and humidity over forest and pasture in Amazonia. Amazonian Deforestation and Climate. Amazon. Deforestation Clim. 1996, 175–192. [Google Scholar]
- Cusack, D.F.; Karpman, J.; Ashdown, D.; Cao, Q.; Ciochina, M.; Halterman, S.; Lydon, S.; Neupane, A. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Rev. Geophys. 2016, 54, 523–610. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, S.; Watanabe, T. An Analysis of the Causes of Deforestation in Malawi: A Case of Mwazisi. Land 2019, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Cresswell, M.P.; Morse, A.P.; Thomson, M.; Connor, S.J. Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model. Int. J. Remote. Sens. 1999, 20, 1125–1132. [Google Scholar] [CrossRef]
- Prata, F.; Caselles, V.; Coll, C.; Sobrino, J.A.; Ottlé, C. Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote. Sens. Rev. 1995, 12, 175–224. [Google Scholar] [CrossRef]
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A.; et al. Land cover changes and their bio geophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef]
- Malik, M.S.; Shukla, J.P.; Mishra, S. Relationship of LST, NDBI and NDVI using Landsat-8 data in Kandaihimmat Watershed, Hoshangabad, India. Indian J. Geo Mar. Sci. 2019, 48, 25–31. [Google Scholar]
- Converting Landsat, T.M. ETM+ thermal bands to temperature. Yale Cent. Earth Obs. 2010, 1–4. Available online: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=60571AD20E7D15AEB7A013077666A36D?doi=10.1.1.187.6113&rep=rep1&type=pdf (accessed on 15 September 2019).
- Sabajo, C.R.; Le Maire, G.; June, T.; Meijide, A.; Roupsard, O.; Knohl, A. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia. Biogeosciences 2017, 14, 4619–4635. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2012, 28, 271–283. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2006, 22, 353–365. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur. J. Remote. Sens. 2018, 51, 667–678. [Google Scholar] [CrossRef]
- Anbazhagan, S.; Paramasivam, C.R. Statistical Correlation between Land Surface Temperature (LST) and Vegetation Index (NDVI) using Multi-Temporal Landsat TM Data. Int. J. Adv. Earth Sci. Eng. 2016, 5, 333–346. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.; Myneni, R.; Yin, Y.; Zeng, H. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [Green Version]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.B.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Wang, W.; Cui, J.; Meng, F.; Kurban, A.; De Maeyer, P. Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci. Rep. 2017, 7, 3287. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Justice, C.; van Leeuwen, W. Modis Vegetation Index Algorithm Theoretical Basis. Environ. Sci. 1999, 3, 129. [Google Scholar]
- Department of Statistics Malaysia. Available online: https://www.dosm.gov.my (accessed on 1 April 2020).
- Malaysian Meteorological Department. Meteorological Observations Annual Summary Observation Report from 1988 to 2008; Malaysian Meteorological Department: Kuala Lumpur, Malaysia, 2010.
- Haniff, N.B.M.; National Physical Planning Division, PLANMalaysia, Federal Deparment of Town and Country Planning Peninsular Malaysia, Kuala Lumpur, Malaysia. Personal communication, 2018.
- Omar, H.; Misman, M.A.; Musa, S. GIS and Remote Sensing for Mangroves Mapping and Monitoring. In Geographic Information Systems and Science; IntechOpen Limited: London, UK, 2019. [Google Scholar]
- Escuin, S.; Navarro, R.; Fernandez, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote. Sens. 2007, 29, 1053–1073. [Google Scholar] [CrossRef]
- NASA. Landsat 7 Science Data Users Handbook. Available online: http://landsathandbook. gsfc. nasa. gov/inst_cal/prog_sect8_2. html (accessed on 24 April 2020).
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote. Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Space Phys. 2003, 108, 22. [Google Scholar] [CrossRef] [Green Version]
- Hua, A.K.; Ping, O.W. The influence of land-use/land-cover changes on land surface temperature: A case study of Kuala Lumpur metropolitan city. Eur. J. Remote. Sens. 2018, 51, 1049–1069. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote. Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote. Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Statistics, V. Forestry statistics Peninsular Malaysia 2001, 2006, 2010 and 2011; Malaysian Department of Statistics: Kuala Lumpur, Malaysia, 2012.
- Butler, R.A. Mongabay. Malaysia has the World’s Highest Deforestation Rate, Reveals Google Forest Map. Available online: http://news.mongabay.com/2013/1115-worlds-highest-deforestationrate.html2013 (accessed on 24 April 2020).
- Kanniah, K.D.; Siong, H.C. Urban forest cover change and sustainability of Malaysian cities. Chem. Eng. Trans. 2017, 56, 673–678. [Google Scholar]
- Kanniah, K.D.; Sheikhi, A.; Cracknell, A.P.; Goh, H.C.; Tan, K.P.; Ho, C.S.; Rasli, F.N. Satellite Images for Monitoring Mangrove Cover Changes in a Fast Growing Economic Region in Southern Peninsular Malaysia. Remote. Sens. 2015, 7, 14360–14385. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, M.; Parid, M.M.; Aini, Z.N.; Michinaka, T. Proximate and underlying causes of forest cover change in Peninsular Malaysia. For. Policy Econ. 2014, 44, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Henson, I. An assessment of changes in biomass carbon stocks in tree crops and forests in Malaysia. J. Trop. For. Sci. 2005, 7, 279–296. [Google Scholar]
- Aisyah, A.; Shahrul, A.B.; Zulfahmie, M.Z.M.; Mastura, S.S.; Mokhtar, J. Deforestation analysis in Selangor, Malaysia between 1989 and 2011. J. Trop. For. Sci. 2015, 1, 3–12. [Google Scholar]
- Kroll, F.; Haase, D. Does demographic change affect land use patterns? Land Use Policy 2010, 27, 726–737. [Google Scholar] [CrossRef]
- Department of Statistics Malaysia. General report of the population and housing census 1991. In Population Growth and Urbanization in Peninsular Malaysia from 1911 to 2000; Jabatan Perangkaan Malaysia: Kuala Lumpur, Malaysia, 1995. [Google Scholar]
- Department of Statistics Malaysia. General Report of the Population and Housing Census 2000; Department of Statistics Malaysia: Kuala Lumpur, Malaysia, 2005.
- Kanianska, R. Agriculture and its impact on land-use, environment, and ecosystem services. In Landscape Ecology—The Influences of Land Use and Anthropogenic Impacts of Landscape Creation; IntechOpen Limited: London, UK, 2016; pp. 1–26. [Google Scholar]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.-H.; Hertel, B.T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Vu, T.D.; Takeuchi, W.; Van, N.A. Carbon Stock Calculating and Forest Change Assessment Toward REDD+ Activities for The Mangrove Forest in Vietnam. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2014, 12, 23. [Google Scholar] [CrossRef]
- Wan-Mohd-Jaafar, W.S.; Woodhouse, I.H.; Silva, C.A.; Omar, H.; Hudak, A.T. Modelling individual tree aboveground biomass using discrete return lidar in lowland dipterocarp forest of Malaysia. J. Tropical For. Sci. 2017, 4, 465–484. [Google Scholar]
- Wan Mohd Jaafar, W.S.; Woodhouse, I.H.; Silva, C.A.; Omar, H.; Maulud, A.; Mohan, M. Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR Data. Forests 2018, 9, 759. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Wu, S.; Chen, J.; Lü, M. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Xu, C.; Dong, K.; Zhao, J.; Liu, Z. Spatial-temporal difference of time lag for response of NDVI to climatic factors in Changbai mountains. Fresen. Environ. Bull 2016, 25, 3348–3362. [Google Scholar]
- Fang, S.; Cammarano, D.; Zhou, G.; Tan, K.; Ren, S. Effects of increased day and night temperature with supplemental infrared heating on winter wheat growth in North China. Eur. J. Agron. 2015, 64, 67–77. [Google Scholar] [CrossRef]
- Wahidah, M.N.L.; Ahmad, W.J.W.; Said, M.N.M.; Zain, C.R.C.M. Effects of Elevated Atmospheric CO2 on Photosynthesis, Growth and Biomass in Shorea platycarpa F. Heim (Meranti Paya). Sains Malays. 2017, 46, 1421–1428. [Google Scholar]
- Zhang, M.; Gong, Z.N.; Zhao, W.J.; Duo, A. Landscape pattern change and the driving forces in Baiyangdian wetland from 1984 to 2014. Acta Ecol. Sin. 2016, 36, 4780–4791. [Google Scholar] [CrossRef]
- Li, Y.; Chang, J.; Wang, Y.; Jin, W.; Guo, A. Spatiotemporal Impacts of Climate, Land Cover Change and Direct Human Activities on Runoff Variations in the Wei River Basin, China. Water 2016, 8, 220. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi Kumar, T.V.; Koteswara Rao, K.; Barbosa, H.; Prabha Jothi, E. Studies on spatial pattern of NDVI over Indiaand its relationship with rainfall, air temperature, soil moisture adequacy and ENSO. Geofizika 2013, 30, 1–18. [Google Scholar]
- Manandhar, R.; Odeh, I.O.A.; Ancev, T. Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement. Remote Sens. 2009, 1, 330–344. [Google Scholar] [CrossRef] [Green Version]
- The Star. Water for Penang and Kedah Comes from the Forests of Ulu Muda. Available online: https://www.thestar.com.my/lifestyle/living/2017/08/16/water-ulu-muda-forests (accessed on 10 December 2019).
- Ismail, N.A.; Zin, W.Z.W.; Ibrahim, W.; Yeun, L.C. Eight-Day Daytime Land Surface Temperature Pattern Over Peninsular Malaysia. Int. J. Technol. Eng. 2019, 8, 11949–11955. [Google Scholar]
- The Yale Centre for Earth Observation. Converting Landsat TM and ETM+ thermal Bands to Temperature; The Yale Centre for Earth Observation: New Haven, CT, USA, 2010; pp. 1–4. [Google Scholar]
Satellite | Sensor | Part/ Row | Year | Resolution (m) | Wavelength (µm) |
---|---|---|---|---|---|
Landsat-5 | Thematic Mapper (TM) | 127/56 127/57 128/56 128/57 | 1988 2000 2010 | 30 | 0.45–0.52 (Band 1) 0.52–0.60 (Band 2) 0.63–0.69 (Band 3) 0.76–0.90 (Band 4) 1.55–1.75 (Band 5) 10.40–12.50 (Band 6-Thermal) 2.09–2.35 (Band 7) |
Landsat-8 | Operational Land Images (OLI) and Thermal Infrared Sensor (TIRS) | 127/56 127/57 128/56 128/57 | 2017 | 30 | 0.43–0.45 (Band 1) 0.45–0.51 (Band 2) 0.53–0.59 (Band 3) 0.64–0.67 (Band 4) 0.85–0.88 (Band 5) 1.57–1.65 (Band 6) 2.11–2.29 (Band 7) 0.50–0.68 (Band 8) 1.36–1.38 (Band 9) 10.60–11.19 (Band 10-Thermal) 11.50–12.51 (Band 11-Thermal) |
State | Year | Average Air Temperature (°C) | Precipitation Total Rainfall Amount (mm) | State | Average Air Temperature (°C) | Precipitation Total Rainfall Amount (mm) | ||
---|---|---|---|---|---|---|---|---|
Mean | Max | Mean | Max | |||||
Perak | 1988 | 26.9 | 31.8 | 2660.5 | Kedah | 27.4 | 31.3 | 2161.7 |
Perak | 2000 | 27.4 | 32.9 | 2959.1 | Kedah | 27.2 | 32.5 | 1994.6 |
Perak | 2010 | 26.9 | 31.7 | 3257.6 | Kedah | 27.7 | 31.3 | 2274.0 |
Perak | 2017 | 29.2 | 32.3 | 2145.0 | Kedah | 29.3 | 32.5 | 2782.0 |
Type of Forest | 1988 (ha) | 2000 (ha) | 2010 (ha) | 2017 (ha) | Forest Cover Change (1988–2017) | Forest Cover Change (%) |
---|---|---|---|---|---|---|
Terrestrial Forest | 1,164,683 | 1,113,570 | 1,013,673 | 979,760 | −184,923 | −15.88 |
Mangrove Forest | 43,792 | 44,968 | 39,559 | 39,291 | −4501 | −10.28 |
Total Forest | 1,208,475 | 1,158,538 | 1,053,232 | 1,019,052 | −189,423 | −15.67 |
Type of Forest | 1988 (ha) | 2000 (ha) | 2010 (ha) | 2017 (ha) | Forest Cover Change (1988–2017) | Forest Cover Chnge (%) |
---|---|---|---|---|---|---|
Terrestrial Forest | 356,329 | 349,438 | 333,498 | 324,745 | −31,583 | −8.86 |
Mangrove Forest | 9708 | 8643 | 7852 | 7900 | −1807 | −18.61 |
Total Forest | 366,037 | 358,082 | 341,350 | 332,646 | −33,391 | −9.12 |
NDVI Value | Area (ha) | |||
---|---|---|---|---|
1988 | 2000 | 2010 | 2017 | |
0.0–0.1 | 16,724.56 | 5056.59 | 12,958.20 | 5764.69 |
0.1–0.2 | 19,347.80 | 6357.43 | 12,906.03 | 18,536.43 |
0.2–0.3 | 31,243.39 | 10,225.27 | 20,056.60 | 37,353.45 |
0.3–0.4 | 46,603.70 | 20,886.53 | 25,627.36 | 37,353.45 |
0.4–0.5 | 166,219.89 | 80,728.29 | 48,286.42 | 147,867.51 |
0.5–0.6 | 505,917.42 | 455,013.46 | 278,722.24 | 703,684.43 |
0.6–0.7 | 393,153.52 | 525,641.74 | 706,503.92 | 187,280.67 |
0.7–0.8 | 12,798.91 | 48,149.06 | 10,947.43 | 93.24 |
NDVI Value | Area (Ha) | |||
---|---|---|---|---|
1988 | 2000 | 2010 | 2017 | |
0.0–0.1 | 7997.30 | 7609.79 | 748.742 | 113.84 |
0.1–0.2 | 8432.56 | 6139.10 | 1199.03 | 4419.76 |
0.2–0.3 | 13,503.45 | 6890.29 | 2123.02 | 21,314.10 |
0.3–0.4 | 20,353.09 | 15,003.25 | 3953.03 | 56,565.38 |
0.4–0.5 | 29,416.25 | 55,723.64 | 12,614.41 | 82,552.44 |
0.5–0.6 | 78,622.54 | 102,794.42 | 84,128.78 | 138,791.35 |
0.6–0.7 | 189,087.13 | 141,246.97 | 230,266.80 | 33,633.75 |
0.7–0.8 | 7505.71 | 15,933.05 | 3490.63 | 38.44 |
Meteorological Factors | State | 1988 | 2000 | 2010 | 2017 |
---|---|---|---|---|---|
Precipitation Rainfall (mm) | Perak | NDVI = 0.325 + 0.011*R R2 = 0.80 | NDVI = 0.892 + 0.0124*R R2 = 0.71 | NDVI = 0.225 + 0.001*R R2 = 0.859 | NDVI = 0.974 + 0.025*R R2 = 0.67 |
Kedah | NDVI = 0.456 + 0.071*R R2 = 0.75 | NDVI = 0.558 + 0.186*R R2= 0.69 | NDVI = 0.356 + 0.051*R R2 = 0.78 | NDVI = 0.889 + 0.156*R R2 = 0.65 | |
Air Temperature (°C) | Perak | NDVI = 3.045 − 0.065*T R2 = 0.71 | NDVI = 3.546 − 0.105*T R2 = 0.68 | NDVI = 2.046 − 0.055*T R2 = 0.761 | NDVI = 2.546 − 0.100*T R2 = 0.65 |
Kedah | NDVI = 5.005 − 0.051*T R2 = 0.68 | NDVI = 5.689 − 0.119*T R2= 0.65 | NDVI = 4.891 − 0.089*T R2 = 0.75 | NDVI = 4.059 − 0.129*T R2 = 0.61 |
LST (°C) | NDVI | ||||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | ||
1988 | Perak | 16.93 | 26.48 | 21.57 | 6.18 | 0 | 0.82 | 0.53 | 0.17 |
Kedah | 20.37 | 30.00 | 25.67 | 6.29 | 0 | 0.98 | 0.38 | 0.21 | |
2000 | Perak | 19.77 | 27.044 | 23.55 | 3.43 | 0 | 0.75 | 0.58 | 0.13 |
Kedah | 20.54 | 21.07 | 19.92 | 4.40 | 0 | 0.98 | 0.47 | 0.16 | |
2010 | Perak | 14.51 | 27.48 | 20.84 | 6.27 | 0 | 0.74 | 0.59 | 0.14 |
Kedah | 20.89 | 27.243 | 26.78 | 6.94 | 0 | 0.88 | 0.48 | 0.20 | |
2017 | Perak | 18.88 | 29.90 | 24.45 | 6.25 | 0 | 0.85 | 0.44 | 0.11 |
Kedah | 23.85 | 34.78 | 27.76 | 6.50 | 0 | 0.83 | 0.45 | 0.14 |
Economic Activities (%) | 2010 | 2017 | ||
Perak | Kedah | Perak | Kedah | |
Agriculture | 10.1 | 4.6 | 9.6 | 7.1 |
Mining | 0.2 | 0.1 | 5.9 | 14.5 |
Manufacturing | 3.8 | 4.0 | 8.0 | 4.2 |
Construction | 3.5 | 3.1 | 24.5 | 7.1 |
Overall GDP | 5.4 | 3.3 | 5.5 | 5.0 |
Demographic (million) | 2010 | 2017 | ||
Perak | Kedah | Perak | Kedah | |
Population | 2.4 | 2.0 | 2.5 | 2.1 |
Urbanization Rate for Malaysia (%) | 19881 | 20002 | 2010 | 2017 |
47.0 | 62.0 | 70.9 | 75.5 |
State | 1988 | 2000 | 2010 | 2017 |
---|---|---|---|---|
Perak | LST = −5.865NDVI + 23.195 R2 = 0.8122 | LST = −6.882NDVI + 25.805 R2 = 0.798 | LST = −11.194NDVI + 27.097 R2 = 0.856 | LST = −3.337NDVI + 28.837 R2 = 0.910 |
Kedah | LST = −2.335NDVI + 28.663 R2 = 0.891 | LST = −6.566NDVI + 25.674 R2 = 0.889 | LST = −6.050NDVI + 23.063 R2 = 0.841 | LST = −11.624NDVI + 27.206 R2 = 0.905 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan Mohd Jaafar, W.S.; Abdul Maulud, K.N.; Muhmad Kamarulzaman, A.M.; Raihan, A.; Md Sah, S.; Ahmad, A.; Saad, S.N.M.; Mohd Azmi, A.T.; Jusoh Syukri, N.K.A.; Razzaq Khan, W. The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests 2020, 11, 670. https://doi.org/10.3390/f11060670
Wan Mohd Jaafar WS, Abdul Maulud KN, Muhmad Kamarulzaman AM, Raihan A, Md Sah S, Ahmad A, Saad SNM, Mohd Azmi AT, Jusoh Syukri NKA, Razzaq Khan W. The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests. 2020; 11(6):670. https://doi.org/10.3390/f11060670
Chicago/Turabian StyleWan Mohd Jaafar, Wan Shafrina, Khairul Nizam Abdul Maulud, Aisyah Marliza Muhmad Kamarulzaman, Asif Raihan, Syarina Md Sah, Azizah Ahmad, Siti Nor Maizah Saad, Ahmad Tarmizi Mohd Azmi, Nur Khairun Ayuni Jusoh Syukri, and Waseem Razzaq Khan. 2020. "The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia" Forests 11, no. 6: 670. https://doi.org/10.3390/f11060670
APA StyleWan Mohd Jaafar, W. S., Abdul Maulud, K. N., Muhmad Kamarulzaman, A. M., Raihan, A., Md Sah, S., Ahmad, A., Saad, S. N. M., Mohd Azmi, A. T., Jusoh Syukri, N. K. A., & Razzaq Khan, W. (2020). The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests, 11(6), 670. https://doi.org/10.3390/f11060670