Tree Damage by Ice Accumulation in Norway Spruce (Picea abies (L.) Karst.) Stands Regarding Stand Characteristics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef]
- Montagné-Huck, C.; Brunette, M. Economic analysis of natural forest disturbances: A century of research. J. For. Econ. 2018, 32, 42–71. [Google Scholar] [CrossRef]
- Rebane, S.; Jõgiste, K.; Põldveer, E.; Stanturf, J.A.; Metslaid, M. Direct measurements of carbon exchange at forest disturbance sites: A review of results with the eddy covariance method. Scand. J. For. Res. 2019, 34, 585–597. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Nabuurs, G.J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jõgiste, K.; Korjus, H.; Stanturf, J.A.; Frelich, L.E.; Baders, E.; Donis, J.; Jansons, A.; Kangur, A.; Köster, K.; Laarmann, D.; et al. Hemiboreal forest: Natural disturbances and the importance of ecosystem legacies to management. Ecosphere 2017, 8, e01706. [Google Scholar] [CrossRef]
- Bāders, E.; Jansons, Ā.; Matisons, R.; Elferts, D.; Desaine, I. Landscape diversity for reduced risk of insect damage: A case study of Spruce bud Scale in Latvia. Forests 2018, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Donis, J.; Kitenberga, M.; Šņepsts, G.; Dubrovskis, E.; Jansons, Ā. Factors affecting windstorm damage at the stand level in hemiboreal forests in Latvia: Case study of 2005 winter storm. Silva Fenn. 2018, 52, 10009. [Google Scholar] [CrossRef] [Green Version]
- Samariks, V.; Krisans, O.; Donis, J.; Silamikele, I.; Katrevics, J.; Jansons, A. Cost–benefit analysis of measures to reduce windstorm impact in pure Norway spruce (Picea abies L. Karst.) stands in Latvia. Forests 2020, 11, 576. [Google Scholar] [CrossRef]
- Donis, J.; Saleniece, R.; Krisans, O.; Dubrovskis, E.; Kitenberga, M.; Jansons, A. A financial assessment of windstorm risks for Scots pine stands in hemiboreal forests. Forests 2020, 11, 566. [Google Scholar] [CrossRef]
- Kitenberga, M.; Elferts, D.; Adamovics, A.; Katrevics, J.; Donis, J.; Baders, E.; Jansons, A. Effect of salvage logging and forest type on the post-fire regeneration of Scots pine in hemiboreal forests. New For. 2020, 1–17. [Google Scholar] [CrossRef]
- World Meteorological Organisation. International Cloud Atlas. Section 3.2.1.2.2. Available online: https://cloudatlas.wmo.int/en/supercooled-rain.html (accessed on 12 June 2020.).
- Carrière, J.M.; Lainard, C.; Le Bot, C.; Robart, F. A climatological study of surface freezing precipitation in Europe. Meteorol. Appl. 2000, 7, 229–238. [Google Scholar] [CrossRef]
- Bezrukova, N.A.; Jeck, R.K.; Khalili, M.F.; Minina, L.S.; Naumov, A.Y.; Stulov, E.A. Some statistics of freezing precipitation and rime for the territory of the former USSR from ground-based weather observations. Atmos. Res. 2006, 82, 203–221. [Google Scholar] [CrossRef]
- Andrei, S.; Antonescu, B.; Boldeanu, M.; Mărmureanu, L.; Marin, C.A.; Vasilescu, J.; Ene, D. An exceptional case of freezing rain in Bucharest (Romania). Atmosphere 2019, 10, 673. [Google Scholar] [CrossRef] [Green Version]
- Kämäräinen, M.; Hyvärinen, O.; Jylhä, K.; Vajda, A.; Neiglick, S.; Nuottokari, J.; Gregow, H. A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe. Nat. Hazards Earth Syst. Sci. 2017, 17, 243. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Klima, K.; Morgan, M.G. Ice storm frequencies in a warmer climate. Clim. Chang. 2015, 133, 209–222. [Google Scholar] [CrossRef]
- Kämäräinen, M.; Hyvärinen, O.; Vajda, A.; Nikulin, G.; Meijgaard, E.V.; Teichmann, C.; Jacob, D.; Gregow, H.; Jylhä, K. Estimates of present-day and future climatologies of freezing rain in Europe based on CORDEX regional climate models. J. Geophys. Res. Atmos. 2018, 123. [Google Scholar] [CrossRef]
- Sinjur, I.; Vertačnik, G.; Likar, L.; Hladnik, V.; Miklavčič, I.; Gustinčič, M. Žledolom januarja in februarja 2014 v Sloveniji—Prostorska in časovna spremenljivost vremena na območju dinarskih pokrajin. Gozdarski Vestn. 2014, 72, 299–309. [Google Scholar]
- Markosek, J. Severe freezing rain in Slovenia. Eur. Forecast. 2015, 20, 38–42. [Google Scholar]
- Vajda, A. Impacts of severe winter weather events on critical infrastructure. In Proceedings of the RAIN WP2 Workshop on Past Severe Weather Hazards, Berlin, Germany, 27 February 2015. [Google Scholar]
- Bragg, D.C.; Shelton, M.G.; Zeide, B. Impacts and management implications of ice storms on forests in the southern United States. For. Ecol. Manag. 2003, 186, 99–123. [Google Scholar] [CrossRef]
- Kraemer, M.J.; Nyland, R.D. Hardwood Crown Injuries and Rebuilding Following Ice Storms: A Literature Review; Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2010.
- Šimić Milas, A.; Rupasinghe, P.; Balenović, I.; Grosevski, P. Assessment of forest damage in Croatia using landsat-8 OLI images. South East Eur. For. 2015, 6, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Nagel, T.A.; Firm, D.; Rozenbergar, D.; Kobal, M. Patterns and drivers of ice storm damage in temperate forests of Central Europe. Eur. J. For. Res. 2016, 135, 519–530. [Google Scholar] [CrossRef]
- Klopčič, M.; Poljanec, A.; Dolinar, M.; Kastelec, D.; Bončina, A. Ice-storm damage to trees in mixed Central European forests: Damage patterns, predictors and susceptibility of tree species. Forestry 2020, 93, 430–443. [Google Scholar] [CrossRef]
- De Groot, M.; Ogris, N.; Kobler, A. The effects of a large-scale ice storm event on the drivers of bark beetle outbreaks and associated management practices. For. Ecol. Manag. 2018, 408, 195–201. [Google Scholar] [CrossRef]
- Bāders, E.; Adamovičs, A.; Puriņš, M.; Džeriņa, B. Tree damages by icing in Scots pine (Pinus sylvestris L.) stands and factors affecting them. Res. Rural. Dev. 2016, 2, 6–13. [Google Scholar]
- Krisans, O.; Matisons, R.; Rust, S.; Burnevica, N.; Bruna, L.; Elferts, D.; Kalvane, L.; Jansons, A. Presence of root rot reduces stability of Norway spruce (Picea abies): Results of static pulling tests in Latvia. Forests 2020, 11, 416. [Google Scholar] [CrossRef] [Green Version]
- Katrevics, J.; Kapostins, R.; Bickovskis, K.; Jansons, A. Influence of initial density on inventory parameters of unthinned Norway spruce stands. In Proceedings of the International Scientific Conference ‘Rural Development’, Vytautas Magnus University, Kaunas, Lithuania, 26–28 September 2019; pp. 273–277. [Google Scholar]
- Brüchert, F.; Becker, G.; Speck, T. The mechanics of Norway spruce [Picea abies (L.) Karst]: Mechanical properties of standing trees from different thinning regimes. For. Ecol. Manag. 2000, 135, 45–62. [Google Scholar] [CrossRef]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Wallentin, C.; Nilsson, U. Storm and snow damage in a Norway spruce thinning experiment in southern Sweden. Forestry 2014, 87, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Bušs, K. Latvijas PSR Meža Tipoloģijas Pamati; LRZTIPI: Rīga, Latvia, 1976. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Fondation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Groenemeijer, P.; Becker, N.; Djidara, M.; Gavin, K.; Hellenberg, T.; Holzer, A.M.; Juga, I.; Jokinen, P.; Jylhä, K.; Lehtonen, I.; et al. Past cases of extreme weather impact on critical infrastructure in Europe. In RAIN–Risk Analysis of Infrastructure Networks in Response to Extreme Weather; ESSL: Wessling, Germany, 2015. [Google Scholar]
- Jones, J.J.; Pither, J.P.; Debruyn, R.D.; Robertson, R.J. Modeling ice storm damage to a mature, mixed-species hardwood forest in eastern Ontario. Écoscience 2001, 8, 513–521. [Google Scholar] [CrossRef]
- Nielsen, C.; Van Dyke, O.; Pedlar, J. Effects of past management on ice storm damage in hardwood stands in eastern Ontario. For. Chron. 2003, 79, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Proulx, O.J.; Greene, D.F. The relationship between ice thickness and northern hardwood tree damage during ice storms. Can. J. For. Res. 2001, 31, 1758–1767. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Väisänen, H.; Ikonen, V.P. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 1999, 29, 647–661. [Google Scholar] [CrossRef]
- Makkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures. Phil. Trans. R. Soc. 2000, 358, 2913–2939. [Google Scholar] [CrossRef]
- Houston, T.G.; Changnon, S.A. Freezing rain events: A major weather hazard in the conterminous US. Nat. Hazards 2007, 40, 485–494. [Google Scholar] [CrossRef]
- Jalkanen, A.; Mattila, U. Logistic regression models for wind and snow damage in northern Finland based on the national forest inventory data. For. Ecol. Manag. 2000, 135, 315–330. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Hassinen, A.; Granander, M. Mechanical stability of Scots pine, Norway spruce and birch: An analysis of tree-pulling experiments in Finland. For. Ecol. Manag. 2000, 135, 143–153. [Google Scholar] [CrossRef]
- Nykänen, M.L.; Peltola, H.; Quine, C.; Kellomäki, S.; Broadgate, M. Factors affecting snow damage of trees with particular reference to European conditions. Silva Fenn. 1997, 31, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Nock, C.A.; Lecigne, B.; Taugourdeau, O.; Greene, D.F.; Dauzat, J.; Delagrange, S.; Messier, C. Linking ice accretion and crown structure: Towards a model of the effect of freezing rain on tree canopies. Ann. Bot. 2016, 117, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Rebertus, A.J.; Shifley, S.R.; Richards, R.H.; Roovers, L.M. Ice storm damage to an old-growth oak-hickory forest in Missouri. Am. Midl. Nat. 1997, 137, 48–61. [Google Scholar] [CrossRef]
- Rhoades, R.W. Ice storm damage in a small valley in southwestern Virginia. Castanea 1999, 64, 243–251. [Google Scholar]
- Priebe, J.E.; Powers, M.D.; Cole, E.C. Species, tree size, and overstory environment affect likelihood of ice storm damage to understory trees in a mature Douglas-fir forest. For. Ecol. Manag. 2018, 409, 777–788. [Google Scholar] [CrossRef]
- Zarnovican, R. Glaze damage in a young yellow birch stand in southern Quebec, Canada. North. J. Appl. For. 2001, 18, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Valinger, E.; Fridman, J. Modelling probability of snow and wind damage in Scots pine stands using tree characteristics. For. Ecol. Manag. 1997, 97, 215–222. [Google Scholar] [CrossRef]
- Päätalo, M.L. Risk of snow damage in unmanaged and managed stands of Scots pine, Norway spruce and birch. Scand. J. For. Res. 2000, 15, 530–541. [Google Scholar] [CrossRef]
- Zeltiņš, P.; Katrevičs, J.; Gailis, A.; Maaten, T.; Jansons, J.; Jansons, Ā. Stem cracks of Norway spruce (Picea abies (L.) Karst.) provenances in Western Latvia. For. Stud. 2016, 65, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Krisans, O.; Saleniece, R.; Rust, S.; Elferts, D.; Kapostins, R.; Jansons, A.; Matisons, R. Effect of bark-stripping on mechanical stability of Norway spruce. Forests 2020, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Arhipova, N.; Gaitnieks, T.; Donis, J.; Stenlid, J.; Vasaitis, R. Butt rot incidence, causal fungi, and related yield loss in Picea abies stands of Latvia. Can. J. For. Res. 2011, 41, 2337–2345. [Google Scholar] [CrossRef]
- Petty, J.A.; Worrell, R. Stability of coniferous tree stems in relation to damage by snow. Forestry 1981, 54, 115–128. [Google Scholar] [CrossRef]
- Díaz-Yáñez, O.; Mola-Yudego, B.; González-Olabarria, J.R.; Pukkala, T. How does forest composition and structure affect the stability against wind and snow? For. Ecol. Manag. 2017, 401, 215–222. [Google Scholar] [CrossRef]
- Martín Alcón, S.; González-Olabarria, J.R.; Coll, L. Wind and snow damage in the Pyrenees pine forests: Effect of stand attributes and location. Silva Fenn. 2010, 44, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Päätalo, M.L.; Peltola, H.; Kellomäki, S. Modelling the risk of snow damage to forests under short-term snow loading. For. Ecol. Manag. 1999, 116, 51–70. [Google Scholar] [CrossRef]
- Zubizarreta-Gerendiain, A.; Pellikka, P.; Garcia-Gonzalo, J.; Ikonen, V.P.; Peltola, H. Factors affecting wind and snow damage of individual trees in a small management unit in Finland: Assessment based on inventoried damage and mechanistic modelling. Silva Fenn. 2012, 46, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Snepsts, G.; Kitenberga, M.; Elferts, D.; Donis, J.; Jansons, A. Stem damage modifies the impact of wind on Norway spruces. Forests 2020, 11, 463. [Google Scholar] [CrossRef] [Green Version]
- Wonn, H.T.; O’Hara, K.L. Height: Diameter ratios and stability relationships for four northern Rocky Mountain tree species. West. J. Appl. For. 2001, 16, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Long, J.N. A practical approach to density management. For. Chron. 1985, 61, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Seischab, F.K.; Bernard, J.M.; Eberle, M.D. Glaze storm damage to western New York forest communities. Bull. Torrey Bot. Club 1993, 120, 64–72. [Google Scholar] [CrossRef]
- Urata, T.; Shibuya, M.; Koizumi, A.; Torita, H.; Cha, J. Both stem and crown mass affect tree resistance to uprooting. J. For. Res. 2012, 17, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Slodicak, M.; Novak, J. Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. For. Ecol. Manag. 2006, 224, 252–257. [Google Scholar] [CrossRef]
- Smith, W.H. Ice and forest health. North. J. Appl. For. 2000, 17, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Cain, M.D.; Shelton, M.G. Glaze damage in 13-to 18-year-old, natural, even-aged stands of Loblolly pines in Southeastern Arkansas. In General Technical Report; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2002; pp. 579–583. [Google Scholar]
- Mäkinen, H.; Isomäki, A. Thinning intensity and growth of Norway spruce stands in Finland. Forestry 2004, 77, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Belanger, R.P.; Godbee, J.F.; Anderson, R.L.; Paul, J.T. Ice damage in thinned and nonthinned loblolly pine plantations infected with fusiform rust. South. J. Appl. For. 1996, 20, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Štefančík, I. Development of spruce (Picea abies [L.] Karst.) target (crop) trees in pole-stage stand with different initial spacing and tending regime. J. For. Sci. 2012, 58, 456–464. [Google Scholar]
- Valinger, E.; Lundqvist, L.; Bondesson, L. Assessing the risk of snow and wind damage from tree physical characteristics. Forestry 1993, 66, 249–260. [Google Scholar] [CrossRef]
Stand Parameter | Recently Thinned | Other Stands |
---|---|---|
Number of trees per ha | 385–1613 | 335–2375 |
Basal area, m2 ha−1 | 15–33 | 19–41 |
Stand Characteristics | Proportion of Damaged Spruce, % | Proportion of Damaged Spruce with Broken Top, % | |
---|---|---|---|
Stand layer | overstory | 23.5 ± 1.2 | 98.5 ± 0.7 |
understory | 14.7 ± 1.7 | 96.9 ± 2.2 | |
advance regeneration | 3.2 ± 1.2 | 89.3 ± 12.2 | |
Site type | mesic mineral soil | 24.4 ± 1.7 | 98.6 ± 0.9 |
wet mineral soil | 20.3 ± 3.1 | 98.5 ± 2.1 | |
drained peat soil | 24.5 ± 2.3 | 98.5 ± 1.3 | |
Management | recently thinned | 27.8 ± 1.9 | 98.5 ± 1.0 |
other stands | 20.4 ± 1.6 | 98.6 ± 1.0 |
Model | c | AIC | BIC | Residual Deviance | ||
---|---|---|---|---|---|---|
Mesic Mineral Soil | Wet Mineral Soil | Drained Peat Soil | ||||
0.037 × H * − 0.090 × DBHst *** − 1.579 × Drel *** + 0.013 × CR *** + c ** | 1.067 | 0.661 | 0.994 | 4901.6 | 4946.8 | 4888 |
−0.063 × DBHst*** − 1.233 × Drel *** + 0.015 × CR *** + c ** | 0.801 | 0.388 | 0.726 | 4904 | 4942.7 | 4892 |
−0.058 × DBH *** + 0.016 × CR *** − 0.685 *** | – | – | – | 4908.3 | 4927.6 | 4902.3 |
− | – | – | – | 5133.9 | 5140.4 | 5131.9 |
Model | c | AIC | BIC | Residual Deviance | ||
---|---|---|---|---|---|---|
Mesic Mineral Soil | Wet Mineral Soil | Drained Peat Soil | ||||
0.069 × H *** + 0.001 × Nst *** − 2.086 × Drel *** + 0.012 × CR *** − c * | 1.619 | 2.276 | 1.781 | 2472.1 | 2512 | 2458.1 |
0.069 × H *** + 0.001 × Nst *** − 2.058 × Drel *** + 0.014 × CR *** − 1.533 *** | – | – | – | 2476.5 | 2504.9 | 2466.5 |
0.051 × DBH * + 0.001 × Ns t *** − 2.475 × Drel *** + 0.015 × CR *** − c * | 1.008 | 1.687 | 1.187 | 2478.1 | 2517.9 | 2464.1 |
− | – | – | – | 2575.7 | 2581.4 | 2573.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šēnhofa, S.; Katrevičs, J.; Adamovičs, A.; Bičkovskis, K.; Bāders, E.; Donis, J.; Jansons, Ā. Tree Damage by Ice Accumulation in Norway Spruce (Picea abies (L.) Karst.) Stands Regarding Stand Characteristics. Forests 2020, 11, 679. https://doi.org/10.3390/f11060679
Šēnhofa S, Katrevičs J, Adamovičs A, Bičkovskis K, Bāders E, Donis J, Jansons Ā. Tree Damage by Ice Accumulation in Norway Spruce (Picea abies (L.) Karst.) Stands Regarding Stand Characteristics. Forests. 2020; 11(6):679. https://doi.org/10.3390/f11060679
Chicago/Turabian StyleŠēnhofa, Silva, Juris Katrevičs, Andis Adamovičs, Kārlis Bičkovskis, Endijs Bāders, Jānis Donis, and Āris Jansons. 2020. "Tree Damage by Ice Accumulation in Norway Spruce (Picea abies (L.) Karst.) Stands Regarding Stand Characteristics" Forests 11, no. 6: 679. https://doi.org/10.3390/f11060679
APA StyleŠēnhofa, S., Katrevičs, J., Adamovičs, A., Bičkovskis, K., Bāders, E., Donis, J., & Jansons, Ā. (2020). Tree Damage by Ice Accumulation in Norway Spruce (Picea abies (L.) Karst.) Stands Regarding Stand Characteristics. Forests, 11(6), 679. https://doi.org/10.3390/f11060679