Optimizing the Tending of Forest Stands with Interactive Decision Maps to Balance the Financial Incomes and Ecological Risks according to Owner Demands: Case Study in Rakovník, the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Overall Approach
2.2.1. Definition of Representative Forest Stands
2.2.2. Forest Growth Simulator SIBYLA
2.2.3. Tending Systems
2.2.4. Indicators of Management Goals
2.2.5. Interactive Decision Maps and Reasonable Goals Method
- The balanced forest owner demands balanced multi-criteria optimization—the goal will be to maximize the growing volume value and cumulative thinning revenues at the rotation end while minimizing the H/D values and maximizing the biodiversity index, with no decisive preference for any indicator. In this case, he/she would be a neutrally oriented DM, who strives for the simultaneous and balanced performance of all the considered indicators at once. Such a forest owner can be denoted as fully integrative or truly multifunctional.
- The economically oriented risk-seeking owner prefers the maximization of financial incomes from wood over risk minimization—the overall aim of the economically oriented decision-maker is to achieve the highest production of logs and timber and to trade them, over and at the end of rotations, the other aspects including taking ecological risks into account only marginally.
- The economically oriented risk-avoiding forest owner is worried about the ecological stability of his/her forest over the financial revenues from wood harvests—this decision-maker is focused on strengthening the static stability and sustainability of the forest and primarily tries to minimize the values of the H/D ratios.
- The nature-oriented decision-maker is focused on nature conservation and landscape protection—the main interest is the maximization of non-economic criteria, namely the preservation and promotion of biodiversity; thus, maximizing the values of the B index is a priority.
3. Results
- If we prefer economic optimization criteria at higher risk levels, the slight-to-average thinning applied once per decade is suggested.
- If we concentrate on static/ecological stability, various thinning methods can be applied, but the application must be relatively frequent, and the strength must approach the optimal stocking levels defined by Assman [60]. Moreover, in spruce-dominated stands, intensive pre-commercial thinning is the main measure for reducing the risk of damage (mainly by snow). Thinning should be done before a stand top height of 10 m is reached [61,62].
- If the promotion of biodiversity is at the center of our attention, the conversion of species composition is the first choice (the biodiversity indicator values are lowest in spruce monocultures). A stronger overstory or future crop tree thinning applied less frequently (once per decade) is an additional option.
- Slighter or medium interventions once per decade in spruce-dominated stands.
- Slighter overstorey interventions with the higher frequency of two times per decade until the age of 50 years and once per decade beyond 50 years for partly changed species composition with the enlarged representation of broadleaves.
- The overstorey method with intervention once per decade to achieve optimal stocking for native broadleaf-dominated stands.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lazdinis, M.; Angelstam, P.; Lazdinis, I. Maintenance of forest biodiversity in a post-Soviet governance model: Perceptions by local actors in Lithuania. Environ. Manag. 2007, 40, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Brukas, V.; Sallnäs, O. Forest management plan as a policy instrument: Carrot, stick or sermon? Land Use Policy 2012, 29, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Brodrechtova, Y.; Navrátil, R.; Sedmák, R.; Tuček, J. Using the politicized IAD framework to assess integrated forest management decision- making in Slovakia. Land Use Policy 2018, 79, 1001–1013. [Google Scholar] [CrossRef]
- Kulla, L.; Sitková, S. Reconstruction of Non-Native Spruce Forests: Knowledge, Experience, Recommendations; National Forest Centre: Zvolen, Slovakia, 2012. (In Slovak) [Google Scholar]
- Eggers, J.; Holmgren, S.; Nordström, E.; Lämås, T.; Lind, T.; Öhman, K. Balancing different forest values: Evaluation of forest management scenarios in a multi-criteria decision analysis framework. For. Policy Econ. 2019, 103, 55–69. [Google Scholar] [CrossRef]
- Lazdinis, M.; Angelstam, P. Functionality of riparian forest ecotones in the context of former Soviet Union and Swedish forest management histories. For. Policy Econ. 2005, 7, 321–332. [Google Scholar] [CrossRef]
- Meidinger, E.; Brukas, V.; Bouttoud, G.; Tysiachniouk, M.; Ahas, R.; Actins, A.; Hain, H.; Paschalis-Jakubowicz, P.; Kore, M.; Mardiste, P. Forest certification in Eastern Europe and Russia. In Confronting Sustainability: Forest Certification in Developing and Transitioning Countries; Cashore, B., Gale, F., Meidinger, E., Newson, D., Eds.; Report number 8; Yale University: New Haven, CT, USA, 2006; pp. 163–170. [Google Scholar]
- Lawrence, A. Forestry in transition: Imperial legacy and negotiated expertise in Romania and Poland. For. Policy Econ. 2009, 11, 429–436. [Google Scholar] [CrossRef]
- Maes, J.; Fabrega, N.; Zulian, G.; Barbosa, A.L.; Vizcaino, P.; Ivits, E.; Polce, C.; Vandecasteele, I.; Rivero, I.M.; Guerra, C.; et al. Mapping and Assessment of Ecosystems and Their Services: Trends in Ecosystems and Ecosystem Services in the European Union between 2000 and 2010; Publications Office of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure; Fabis Consulting Ltd.: Nottingham, UK, 2018. [Google Scholar]
- Díaz, S.; Settle, J.; Brondizio, E. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, (IPBES) Summary for policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services (Version Summary for Policy Makers); Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2019. [Google Scholar]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: EU Biodiversity Strategy for 2030 Bringing nature back into our lives. COM/2020/380_final. Available online: https://ec.europa.eu/environment/nature/biodiversity/strategy/index_en.htm (accessed on 20 May 2020).
- Papánek, F. Theory and Practice of Functionally Integrated Forest Management; Príroda: Bratislava, Slovakia, 1978. (In Slovak) [Google Scholar]
- Krečmer, V. Sustainable development and forest management in the Czech Republic (I). Lesnícví-Forestry 1993, 39, 513–519. (In Czech) [Google Scholar]
- Vyskot, I. Classification of Forests in the Czech Republic According to the Significance of the Total Real Potential of Society-Wide Functions (for Management Units and Stand Types); ME (MŽP): Prague, Czech Republic, 1999. (In Czech) [Google Scholar]
- Vyskot, I.; Schneider, J.; Kozumplíková, A. Dynamics of functional effect of forest stands within ecosystem services problematics. Zprávy Lesníckeho Výskumu 2016, 61, 81–89. (In Czech) [Google Scholar]
- Sedmák, R.; Fabrika, M.; Bahýľ, J.; Pôbiš, I.; Tuček, J. Application of simulation and optimization tools for developing forest management plans in the Slovak natural and management conditions. In Implementation of DSS Tools into the Forestry Practice: Reviewed Conference Proceedings; Tuček, J., Ericsson, O., Garcia-Gonzalo, J., Eds.; Technical University in Zvolen: Zvolen, Slovakia, 2013; pp. 139–152. [Google Scholar]
- Zlatník, A. Overview of Slovak Forests According to Groups of Forest Types. Files of Scientific Laboratory Biocoenology and Forest Typology, 3rd ed.; Agriculture University in Brno: Brno, Czech Republic, 1959. (In Czech) [Google Scholar]
- Plíva, K. Phytocoenological Classification System of Forest Management Institute; Forest management Institute: Brandýs nad Labem, Czech Republic, 1987. (In Czech) [Google Scholar]
- Halaj, J.; Petráš, R. Growth Tables of Main Tree Species; Slovak Academic Press: Bratislava, Slovakia, 1998. (In Slovak) [Google Scholar]
- Halaj, J.; Grék, J.; Pánek, F.; Petráš, R.; Řehák, J. Growth Tables of Main Tree Species of Czechoslovakia; Nature Press: Bratislava, Slovakia, 1987. (In Slovak) [Google Scholar]
- Bavlšík, J.; Kučera, J.; Ruman, K. Forestry Planning and Sustainable Forest Management; National Forest Centre: Zvolen, Slovakia, 2010. (In Slovak) [Google Scholar]
- Tuček, J.; Sedmák, R.; Majlingová, A.; Sedliak, M.; Marques, S. Decision support systems in Slovak forestry planning: A review. For. J. 2015, 61, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Sedmák, R. System of forest management planning in Slovakia—The time has come for a change? Správy z Výskumu Lesníckej Fakulty pre prax 2018, 2, 5–13. (In Slovak) [Google Scholar]
- Quine, C.P.; Bailey, S.A.; Watts, K. Sustainable forest management in a time of ecosystem services frameworks: Common ground and consequences. J. Appl. Ecol. 2013, 50, 863–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Považan, R.; Getzner, M.; Kadlečík, J. Assessment of ecosystem services in protected areas of the Carpathians with a focus on Slovakia—Methodological procedure for rapid assessment. Quaest. Rerum Nat. 2014, 1, 7–14. (In Slovak) [Google Scholar]
- Považan, R.; Getzner, M.; Švajda, J. On the valuation of ecosystem services in Muránska Planina National Park. J. Prot. Mt. Areas Res. 2015, 7, 61–69. [Google Scholar] [CrossRef]
- Nordström, E.; Eriksson, L.O.; Öhman, K. Integrating multiple criteria decision analysis in participatory forest planning: Experience from a case study in northern Sweden. For. Policy Econ. 2010, 12, 562–574. [Google Scholar] [CrossRef] [Green Version]
- Estévez, R.A.; Walshe, T.; Burgman, M.A. Capturing social impacts for decision-making: A multi-criteria decision analysis perspective. Divers. Distrib. 2013, 19, 608–616. [Google Scholar] [CrossRef]
- Bruña-García, X.; Marey-Pérez, M.F. Public participation: A need of forest planning. iForest Biogeosci. For. 2014, 7, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Balteiro, L.; Romero, C. Making forestry decisions with multiple criteria: A review and an assessment. For. Ecol. Manag. 2008, 255, 3222–3241. [Google Scholar] [CrossRef]
- Muys, B.; Hynynen, J.; Palahí, M.; Lexer, M.J.; Fabrika, M.; Pretzsch, H.; Gillet, F.; Briceño, E.; Nabuurs, G.J.; Kint, V. Simulation tools for decision support to adaptive forest management in Europe. For. Syst. 2010, 19, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Rammer, W.; Schauflinger, C.; Vacik, H.; Palma, J.H.N.; Garcia-Gonzalo, J. A web-based ToolBox approach to support adaptive forest management under climate change. Scand. J. For. Res. 2014, 29, 96–107. [Google Scholar] [CrossRef]
- Reynolds, K.; Paplanus, S.; Miller, B.; Murphy, P. Design features behind success of the ecosystem management decision support system and future development. Forests 2015, 6, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Blattert, C.; Lemm, R.; Thees, O.; Lexer, M.J.; Hanewinkel, M. Management of ecosystem services in mountain forests: Review of indicators and value functions for model based multi-criteria decision analysis. Ecol. Indic. 2017, 79, 391–409. [Google Scholar] [CrossRef]
- Segura, M.; Ray, D.; Maroto, C. Decision support systems for forest management: A comparative analysis and assessment. Comput. Electron. Agric. 2014, 101, 55–67. [Google Scholar] [CrossRef]
- Mendoza, G.A.; Martins, H. Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. For. Ecol. Manag. 2006, 230, 1–22. [Google Scholar] [CrossRef]
- Mazziotta, A.; Podkopaev, D.; Triviño, M.; Miettinen, K.; Pohjanmies, T.; Mönkkönen, M. Quantifying and resolving conservation conflicts in forest landscapes via multi-objective optimization. Silva Fenn. 2017, 51, 1778. [Google Scholar] [CrossRef]
- Borges, J.G.; Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Marques, S.; Oliveira, M.M. Addressing multi-criteria forest management with Pareto frontier methods: An application in Portugal. For. Sci. 2014, 60, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Lotov, A.V.; Zaitsev, A.D.; Kiastanov, A.A. Reasonable Goals Method for Databases (RGDB). Available online: http://www.ccas.ru/mmes/mmeda/soft/third.htm (accessed on 30 May 2020).
- Lotov, A.V.; Miettinen, K. Visualizing the Pareto Frontier. In Multi-Objective Optimization: Interactive and Evolutionary Approaches; Branke, J., Branke, J., Deb, K., Miettinen, K., Slowiński, R., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; pp. 213–244. [Google Scholar]
- Lotov, A.V.; Bushenkov, V.A.; Kamenev, G.K. Interactive Decision Maps: Approximation and Visualization of Pareto Frontier; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 89. [Google Scholar]
- Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.; Nordström, E.M. A multiple criteria approach for negotiating ecosystem services supply targets and forest owners’ programs. For. Sci. 2017, 63, 49–61. [Google Scholar] [CrossRef]
- Merganič, J.; Merganičová, K.; Výbošťok, J.; Valent, P.; Bahýľ, J.; Yousefpour, R. Searching for Pareto Fronts for Forest Stand Wind Stability by Incorporating Timber and Biodiversity Values. Forests 2020, 11, 583. [Google Scholar] [CrossRef]
- The European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 676754: Alternative Models and Robust Decision Making for Future Forest Management (ALTERFOR), 2016–2020. Available online: https://alterfor-project.eu/ (accessed on 10 April 2020).
- The European Union’s Seventh Program for Research, Technological Development and Demonstration under Grant Agreement No. 282887: Future-Oriented Integrated Management of European Forest Landscapes (INTEGRAL), 2011–2014. Available online: https://cordis.europa.eu/project/id/282887 (accessed on 1 November 2011).
- Branke, J.; Miettinen, K.; Slowiński, R. Multiobjective Optimization: Interactive and Evolutionary Approaches; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Fabrika, M. SIBYLA Forest Biodynamics Simulator: Concept, Construction and Software Solution; TU Zvolen: Zvolen, Slovakia, 2005. (In Slovak) [Google Scholar]
- Augustynczik, A.L.D.; Gutsch, M.; Basile, M.; Suckow, F.; Lasch, P.; Yousefpour, R.; Hanewinkel, M. Socially optimal forest management and biodiversity conservation in temperate forests under climate change. Ecol. Econ. 2020, 169, 106504. [Google Scholar] [CrossRef]
- Felton, A.; Petersson, L.; Nilsson, O.; Witzell, J.; Cleary, M.; Felton, A.M.; Björkman, C.; Sang, Å.O.; Jonsell, M.; Holmström, E.; et al. The tree species matters: Biodiversity and ecosystem service implications of replacing Scots pine production stands with Norway spruce. Ambio 2020, 49, 1035–1049. [Google Scholar] [CrossRef] [Green Version]
- Duffy, J.E.; Godwin, C.M.; Cardinale, B.J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 2017, 549, 261–264. [Google Scholar] [CrossRef]
- Chu, X.; Yang, H.; Jiang, Y.; Man, R. On the use of observational data in studying biodiversity-productivity relationships in forests. For. Chron. 2019, 95, 24–28. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Ďurský, J. The single tree-based stand simulator SILVA: Construction, application and evaluation. For. Ecol. Manag. 2002, 162, 3–21. [Google Scholar] [CrossRef]
- Sharma, R.P.; Vacek, Z.; Vacek, S.; Kučera, M. A nonlinear mixed-effects height-to-diameter ratio model for several tree species based on Czech national forest inventory data. Forests 2019, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Forest Dynamics, Growth and Yield: From Measurement to Model; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands, 2nd ed.; Springer: Dordrecht, The Netherland, 2012. [Google Scholar]
- O’Hara, K.L. Multiaged Silviculture: Managing for Complex Forest Stand Structures; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Jaehne, S.; Dohrenbusch, A. A method to evaluate forest stand diversity. Forstwiss. Cent. 1996, 116, 1–6. [Google Scholar]
- Soloveitchik, D.; Ben-Aderet, N.; Grinman, M.; Lotov, A. Multiobjective optimization and marginal pollution abatement cost in the electricity sector—An Israeli case study. Eur. J. Oper. Res. 2002, 140, 571–583. [Google Scholar] [CrossRef]
- Assmann, E. Waldertragskunde: Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbestände; BLV Verlagsgesellschaft: Munchen, Germany, 1961. [Google Scholar]
- Slodicak, M.; Novak, J. Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. For. Ecol. Manag. 2006, 224, 252–257. [Google Scholar] [CrossRef]
- Hein, S.; Herbstritt, S.; Kohnle, U. Auswirkung der Z-Baum-Auslesedurchforstung auf Wachstum, Sortenertrag und Wertleistung im europäischen Fichten-Stammzahlversuch (Picea abies (L. Karst.) in Südwestdeutschland. Allgemeine Forst und Jagdzeitung 2007, 179, 192–201. [Google Scholar]
- Konôpka, J. From production to multifunctional utilization of forest ecosystems. For. J. 2010, 56, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Sarvašová, Z.; Báliková, K.; Dobšinská, Z.; Štěrbová, M.; Šálka, J. Payments for forest ecosystem services across Europe—Main approaches and examples from Slovakia. Ekológia 2019, 38, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Schröter, M.; Albert, C.; Marques, A.; Tobon, W.; Lavorel, S.; Maes, J.; Brown, C.; Klotz, S.; Bonn, A. National ecosystem assessments in Europe: A review. Bioscience 2016, 66, 813–828. [Google Scholar] [CrossRef] [Green Version]
- Maria, E.; Maarten, N.; Emin, N.; Başkent, Z.; Biber, P.; Black, K. Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. Eur. J. For. Res. 2019, 138, 561–581. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Mavsar, R.; Giergiczny, M.; Lindner, M.; Edwards, D.; Schelhaas, M.J. Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests. Ecosyst. Serv. 2014, 9, 155–165. [Google Scholar] [CrossRef]
- Eyvindson, K.; Repo, A.; Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. For. Policy Econ. 2018, 92, 119–127. [Google Scholar] [CrossRef]
- Schwaiger, F.; Poschenrieder, W.; Biber, P.; Pretzsch, H. Ecosystem service trade-offs for adaptive forest management. Ecosyst. Serv. 2019, 39, 100993. [Google Scholar] [CrossRef]
- Lafond, V.; Cordonnier, T.; Mao, Z.; Courbaud, B. Trade-offs and synergies between ecosystem services in uneven-aged mountain forests: Evidences using Pareto fronts. Eur. J. For. Res. 2017, 136, 997–1012. [Google Scholar] [CrossRef]
- Daily, G.C. What are ecosystem services. In Global Environmental Challenges for the Twenty-First Century: Resources, Consumption and Sustainable Solutions; Lorey, D.E., Ed.; Scholarly Resources Inc.: Wilmington, DE, USA, 2003; pp. 227–231. [Google Scholar]
- Pasalodos-Tato, M.; Mäkinen, A.; Garcia-Gonzalo, J.; Borges, J.G.; Lämås, T.; Eriksson, L.O. Review. Assessing uncertainty and risk in forest planning and decision support systems: Review of classical methods and introduction of innovative approaches. For. Syst. 2013, 22, 282–303. [Google Scholar] [CrossRef] [Green Version]
- Uhde, B.; Hahn, W.A.; Griess, V.C.; Knoke, T. Hybrid MCDA methods to integrate multiple ecosystem services in forest management planning: A critical review. Environ. Manag. 2015, 56, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T. Multiple risks in multi-objective forest planning: Integration and importance. For. Ecol. Manag. 1998, 111, 266–284. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Stuck, D.R.; Leuschner, W.A.; Reynolds, M.R. Allocating inventory resources for multiple-use planning. Can. J. For. Res. 2015, 8, 100–110. [Google Scholar] [CrossRef]
- Kangas, A.; Kangas, J.; Kurtitil, M. Decision Support for Forest Management; Series: Managing Forest Ecosystems; Springer International Publishing: Cham, Switzerland, 2015; Volume 30. [Google Scholar]
- Ananda, J.; Herath, G. A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecol. Econ. 2009, 68, 2535–2548. [Google Scholar] [CrossRef]
- Deb, K.; Singhya, K.; Hakanen, J. Multi-objective optimization. In Decision Sciences: Theory and Practise; Sengupta, R.N., Gupta, A., Dutta, J., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 146–183. [Google Scholar]
- Bruña-García, X.; Marey-Pérez, M.F. The challenge of diffusion in forest plans: A methodological proposal and case study. Forests 2018, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, K. Survey of methods to visualize alternatives in multiplecriteria decision making problems. OR Spectr. 2014, 36, 3–37. [Google Scholar] [CrossRef] [Green Version]
Composition | Tree Species | Q | Vtable | Rep. | DBH | H | Vactual |
---|---|---|---|---|---|---|---|
(m3ha−1) | (%) | (cm) | (m) | (m3ha−1) | |||
Changed | spruce | 24 | 79 | 100 | 9.2 | 9.0 | 79.0 |
Partly changed | spruce | 24 | 79 | 60 | 9.2 | 9.0 | 47.4 |
beech | 26 | 85 | 30 | 7.4 | 10.1 | 25.5 | |
oak | 22 | 71 | 10 | 8.3 | 10.1 | 7.1 | |
Natural | beech | 26 | 85 | 60 | 7.4 | 10.1 | 51.0 |
oak | 22 | 71 | 30 | 8.3 | 10.1 | 21.3 | |
fir | 22 | 59 | 10 | 8.6 | 8.0 | 5.9 |
System | Age of Forest Stands at the Time of the Intervention | N | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I 1 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 15 |
II | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 90 | 14 | |
III 2 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 80 | 90 | 13 | ||
IV | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 70 | 80 | 90 | 12 | |||
V 3 | 30 | 35 | 40 | 45 | 50 | 60 | 70 | 80 | 90 | 11 | ||||
VI | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 90 | 10 | |||||
VII | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 9 | ||||||
VIII | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 8 | ||||||
IX | 30 | 40 | 50 | 60 | 70 | 80 | 7 | |||||||
X | 30 | 40 | 50 | 60 | 80 | 6 | ||||||||
XI 4 | 30 | 40 | 60 | 80 | 5 | |||||||||
XII | 30 | 40 | 60 | 80 | 4 | |||||||||
XIII 5 | 30 | 40 | 60 | 3 | ||||||||||
XIV | 30 | 40 | 2 | |||||||||||
XV | 30 | 1 |
SC | FO | T | S | TS | SD | DA | Description and Recommendations |
---|---|---|---|---|---|---|---|
Changed | Ec-Rs | B | VII | 1 | - | - | Slight B, 1x per decade, maintain full canopy cover |
Ec-Ra | B | II | 0.8 | - | - | P, 2x per decade until 80 years; later, 1x per decade, maintain optimal stocking | |
Nr | A | XII | 0.8 | - | - | A, 1x per 20 years, optimal stocking | |
Ba | A | VII | 1 | - | - | Slight A, 1x per decade, full canopy cover | |
Partly changed | Ec | B | VI | 1 | - | - | Slight B, 2x per decade until 50 years; later, 1x per decade, full canopy cover |
En | A | VI | 1 | - | - | Slight A, 2x per decade until 50 years; later, 1x per decade | |
Nr | T | XII | - | 9 | 1 | T, 1x per 20 years, low target tree number—aid 1 | |
Ba | A | VI | 1 | - | - | Slight A, 2x per decade until 50 years; later, 1x per decade, full canopy cover | |
Natural | Ec | A | VII | 0.8 | - | - | A, 1x per decade, optimal stocking |
En | T | XII | - | 9 | 2 | T, 1x per 20 years, low target tree number—aid 2 | |
Nr | A | XII | 0.7 | - | - | A, 1x per 20 years, stronger interventions up to critical stocking level | |
Ba | A | VII | 0.8 | - | - | A, 1x per decade, optimal stocking |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedmák, R.; Tuček, J.; Levická, M.; Sedmáková, D.; Bahýľ, J.; Juško, V.; Kašpar, J.; Marušák, R.; Bushenkov, V.A. Optimizing the Tending of Forest Stands with Interactive Decision Maps to Balance the Financial Incomes and Ecological Risks according to Owner Demands: Case Study in Rakovník, the Czech Republic. Forests 2020, 11, 730. https://doi.org/10.3390/f11070730
Sedmák R, Tuček J, Levická M, Sedmáková D, Bahýľ J, Juško V, Kašpar J, Marušák R, Bushenkov VA. Optimizing the Tending of Forest Stands with Interactive Decision Maps to Balance the Financial Incomes and Ecological Risks according to Owner Demands: Case Study in Rakovník, the Czech Republic. Forests. 2020; 11(7):730. https://doi.org/10.3390/f11070730
Chicago/Turabian StyleSedmák, Róbert, Ján Tuček, Martina Levická, Denisa Sedmáková, Ján Bahýľ, Vladimír Juško, Jan Kašpar, Róbert Marušák, and Vladimir A. Bushenkov. 2020. "Optimizing the Tending of Forest Stands with Interactive Decision Maps to Balance the Financial Incomes and Ecological Risks according to Owner Demands: Case Study in Rakovník, the Czech Republic" Forests 11, no. 7: 730. https://doi.org/10.3390/f11070730
APA StyleSedmák, R., Tuček, J., Levická, M., Sedmáková, D., Bahýľ, J., Juško, V., Kašpar, J., Marušák, R., & Bushenkov, V. A. (2020). Optimizing the Tending of Forest Stands with Interactive Decision Maps to Balance the Financial Incomes and Ecological Risks according to Owner Demands: Case Study in Rakovník, the Czech Republic. Forests, 11(7), 730. https://doi.org/10.3390/f11070730