Short-Term Recovery of Residual Tree Damage during Successive Thinning Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Thinning Damage
3.2. Wound Healing Rate
3.3. Diameter Growth of Wounded Trees
4. Discussion
4.1. Thinning Damage to Residual Trees
4.2. Wound Healing Rate
4.3. Diameter Growth of Wounded Trees
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonyad, A. Silvicultural thinning intensity effects on increasing the growth of planted loblolly Pine (Pinus taeda L.) stands in Northern Iran. Taiwan J. For. Sci. 2006, 21, 317–326. [Google Scholar]
- Fadaei, F.; Fallah, A.; Latifi, H.; Mohammadi, K. Determining the best form factor formula for loblolly Pine (Pinus taeda L.) plantations at the age of 18, in Guilan-northern Iran. Casp. J. Environ. Sci. 2008, 6, 19–24. [Google Scholar]
- Picchio, R.; Venanzi, R.; Latterini, F.; Marchi, E.; Laschi, A.; Lo Monaco, A. Corsican pine (Pinus laricio Poiret) stand management: Medium and long lasting effects of thinning on biomass growth. Forests 2018, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- Marchi, E.; Neri, F.; Fioravanti, M.; Picchio, R.; Goli, G.; Di Giulio, G. Effects of cutting patterns of shears on occlusion processes in pruning of high-quality wood plantations. Croat. J. For. Eng. 2013, 34, 295–304. [Google Scholar]
- Corona, P.; Ascoli, D.; Barbati, A.; Bovio, G.; Colangelo, G.; Elia, M.; Garfì, V.; Iovino, F.; Lafortezza, R.; Leone, V.; et al. Integrated forest management to prevent wildfires under mediterranean environments. Ann. Silv. Res. 2015, 39, 1–22. [Google Scholar]
- Nikooy, M.; Tavankar, F.; Naghdi, R.; Ghorbani, A.; Jourgholami, M.; Picchio, R. Soil impacts and residual stand damage from thinning operations. Int. J. For. Eng. 2020. [Google Scholar] [CrossRef]
- Vossbrink, J.; Horn, R. Modern forestry vehicles and their impact on soil physical properties. Eur. J. For. Res. 2004, 123, 259–267. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and how much, do harvesting activities affect forest soil, regeneration and stands? Cur. For. Rep. 2020. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Bonyad, A.E.; Majnounian, B. Affective factors on residual tree damage during selection cutting and cable-skidder logging in the Caspian forests, Northern Iran. Ecol. Eng. 2015, 83, 505–512. [Google Scholar] [CrossRef]
- Fröding, A. Thinning Damage—A study of 403 Stands in Sweden in 1988; Department of Operational Efficiency, University of Agricultural Sciences: Garpenberg, Sweden, 1992; Report No. 193. (In Swedish with English Summary). [Google Scholar]
- Picchio, R.; Neri, F.; Petrini, E.; Verani, S.; Marchi, E.; Certini, G. Machinery-induced soil compaction in thinning two pine stands in central Italy. For. Ecol. Manag. 2012, 285, 38–43. [Google Scholar] [CrossRef]
- Tavankar, F.; Majnounian, B.; Bonyad, A.E. Felling and skidding damage to residual trees following selection cutting in Caspian forests of Iran. J. For. Sci. 2013, 59, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Marchi, E.; Picchio, R.; Spinelli, R.; Verani, S.; Venanzi, R.; Certini, G. Environmental impact assessment of different logging methods in pine forests thinning. Ecol. Eng. 2014, 70, 429–436. [Google Scholar] [CrossRef]
- Meadows, J.S. Logging damage to residual trees following partial cutting in a green ash-sugarberry stand in the Mississippi Delta. In General Technical Report NC; U.S. Department of Agriculture, Forest Service, North-Central Forest Experiment Station: St. Paul, MN, USA, 1993. [Google Scholar]
- Lo Monaco, A.; Calienno, L.; Pelosi, C.; Balletti, F.; Agresti, G.; Picchio, R. Technical properties of beech wood from aged coppices in central Italy. iForest 2015, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y. Damage to residual stands from thinning with short-span tower yarders: Re-examination of wounds after five years. J. For. Res. 2000, 5, 201–204. [Google Scholar] [CrossRef]
- Vasiliauskas, R. Damage to trees due to forestry operations and its pathological significance in temperate forests: A literature review. Forestry 2001, 74, 319–336. [Google Scholar] [CrossRef] [Green Version]
- Vasiliauskas, A.; Stenlid, J. Discoloration following bark stripping wounds on Fraxinus excelsior. Eur. J. For. Pathol. 2007, 28, 383–390. [Google Scholar] [CrossRef]
- Tavankar, F.; Bonyad, A.; Marchi, E.; Venanzi, R.; Picchio, R. Effect of logging wounds on diameter growth of beech (Fagus orientalis Lipsky) trees following selection cutting in Caspian forests of Iran. N. Z. J. For. Sci. 2015, 45, 19. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Picchio, R.; Lo Monaco, A.; Nikooy, M.; Venanzi, R.; Bonyad, A.E. Wound healing rate in oriental beech trees following logging damage. Drewno 2019, 62, 5–22. [Google Scholar]
- Picchio, R.; Neri, F.; Maesano, M.; Savelli, S.; Sirna, A.; Blasi, S.; Baldini, S.; Marchi, E. Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. For. Ecol. Manag. 2011, 262, 237–243. [Google Scholar] [CrossRef]
- Tavankar, F.; Nikooy, M.; Picchio, R.; Bonyad, A.; Venanzi, R. Effects of logging wounds on Caucasian Alder trees (Alnus subcordata CA Mey.) in Iranian Caspian forests. Croat. J. For. Eng. 2017, 38, 73–82. [Google Scholar]
- Vasiliauskas, R. Wound healing rate and its influence on spread of decay in spruce. Proc. Lith. For. Res. Inst. 1994, 34, 207–212. [Google Scholar]
- Han, H.S.; Kellogg, L.D. Damage characteristics in young Douglas-fir stands from commercial thinning with four timber harvesting systems. West. J. Appl. For. 2000, 15, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Prindulis, U.; Lazdiņš, A.; Kaleja, S. Impact of biomass extraction method on damage to remaining trees in mechanized thinning of deciduous stands. In Proceedings of the Annual 21st International Scientific Conference: “Research for Rural Development”, Latvia University of Agriculture, Jelgava, Latvia, 13–15 May 2015; Volume 2, pp. 74–80. [Google Scholar]
- Hwang, K.; Han, H.S.; Marshall, S.E.; Page-Dumroese, D.S. Amount and location of damage to residual trees from cut-to-length thinning operations in a young redwood forest in Northern California. Forests 2018, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Picchio, R.; Nikooy, M.; Lo Monaco, A.; Venanzi, R.; Bodaghi, A.I. Healing rate of logging wounds on broadleaf trees in Hyrcanian forest with some technological implications. Drewno 2017, 60, 65–80. [Google Scholar]
- Grzywinski, W.; Turowski, R.; Naskrent, B.; Jelonek, T.; Tomczak, A. The Effect of Season of the Year on the Frequency and Degree of Damage during Commercial Thinning in Black Alder Stands in Poland. Forests 2019, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- Dembure, T.P.; McEwan, A.; Raffaele Spinelli, R.; Magagnotti, N.; Ramantswana, M. A comparison between two alternative harvesting systems in the thinning of fast-growing pine plantations under the conditions of low labour cost. Eur. J. For. Res. 2019, 138, 43–52. [Google Scholar] [CrossRef]
- Ezzati, S.; Najafi, A. Long-term impact evaluation of ground-based skidding on residual damaged trees in the Hyrcanian forest, Iran. Int. J. For. Res. 2010, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.A.; Clark, D.B. Life History Diversity of Canopy and Emergent Trees in a Neotropical Rain Forest. Ecol. Monogr. 1992, 62, 315–344. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Nati, C. Benchmarking the impact of traditional small-scale logging systems used in Mediterranean forestry. For. Ecol. Manag. 2010, 260, 1997–2001. [Google Scholar] [CrossRef]
- Spinelli, R.; Lombardini, C.; Magagnotti, N. The effect of mechanization level and harvesting system on the thinning cost of Mediterranean softwood plantations. Silva Fenn. 2014, 48, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ligné, D.; Eliasson, L.; Nordfjell, T. Time consumption and damage to the remaining stock in mechanised and motor manual pre-commercial thinning. Silva Fenn. 2005, 39, 455. [Google Scholar] [CrossRef] [Green Version]
- Sirén, M. Tree damage in single-grip harvester thinning operations. J. For. Eng. 2001, 12, 29–38. [Google Scholar]
- Athanassiadis, D. Residual stand damage following cut-to-length harvesting operations with a farm tractor in two conifer stands. Silva Fenn. 1997, 31, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Sist, P.; Nolan, T.; Bertault, J.-G.; Dykstra, D. Harvesting intensity versus sustainability in Indonesia. For. Ecol. Manag. 1998, 108, 251–260. [Google Scholar] [CrossRef]
- Volkert, E.; Siuts, U.; Dierks, H. Impact of bark stripping damage on timber quality of beech. Allg. Forst Jagdztg. 1953, 125, 277–286. [Google Scholar]
- Hecht, U.; Kohnle, U.; Nill, M.; Grüner, J.; Metzler, B. Bark wounds caused by felling are more susceptible to discoloration and decay than wounds caused by extraction in European beech. Ann. For. Sci. 2015, 72, 731–740. [Google Scholar] [CrossRef]
- Vasiliauskas, R. Patterns of wounding and decay in stems of Quercus robur due to bark peeling. Scand. J. For. Res. 1998, 13, 437–441. [Google Scholar] [CrossRef]
- Neely, D. Healing of wounds on trees. J. Am. Soc. Hortic. Sci. 1970, 95, 536–540. [Google Scholar]
- White, D.A.; Kile, G.A. Breakdown of barrier zones and prediction of the spread of discolouration and decay resulting from stem wounds in Eucalyptus regnans and E. obliqua. Eur. J. For. Pathol. 1994, 24, 71–78. [Google Scholar] [CrossRef]
- Skilling, D.D. Wound healing and defects following northern hardwood pruning. J. For. 1958, 56, 19–22. [Google Scholar]
- Vasaitis, R.; Lygis, V.; Vasiliauskaite, I.; Vasiliauskas, A. Wound occlusion and decay in Picea abies stems. Eur. J. For. Res. 2012, 131, 1211–1216. [Google Scholar] [CrossRef]
- Tavankar, F.; Lo Monaco, A.; Picchio, R.; Venanzi, R.; Nikooy, M. Healing ability and diameter growth of lime-trees (Tilia begonifolia Stev.) following logging wounds. Eur. J. For. Res. 2018, 137, 45–55. [Google Scholar] [CrossRef]
- Tavankar, F.; Bonyad, A. Characteristics and occlusion of logging wounds in Fagus orientalis Lipsky. Taiwan J. For. Sci. 2017, 32, 87–100. [Google Scholar]
Stand Characteristics | Before Thinning | After Thinning | t-test Value | Intensity of Thinning |
---|---|---|---|---|
Tree density (stem ha−1) | 1257.9 ± 21.6 | 1029.3 ± 37.3 | 41.069 ** | 228.6 (18.2%) |
Diameter at breast height (cm) | 38.4 ± 6.2 | 35.9 ± 5.7 | 2.298 * | - |
Tree height (m) | 23.5 ± 1.9 | 21.2 ± 2.2 | 6.117 ** | - |
Basal area (m2 ha−1) | 149.3 ± 46.2 | 106.7 ± 32.3 | 5.858 ** | 42.6 (28.5%) |
Stand volume (m3 ha−1) | 2171.9 ± 769.0 | 1399.7 ± 507.6 | 6.492 ** | 772.2 (35.5%) |
Damage Location | Felling | Extraction | ||
---|---|---|---|---|
(Stem ha−1) | (%) of Residual Trees | (Stem ha−1) | (%) of Residual Trees | |
Root | - | - | 10.8 ± 1.1 b | 1.05 ± 0.12 |
Bole | 15.4 ± 2.3 b | 1.50 ± 0.17 | 28.7 ± 1.6 a | 2.79 ± 0.37 |
Crown | 27.9 ± 4.5 a | 2.71 ± 0.24 | - | - |
t value | 48.6 ** | - | 33.9 ** | - |
Total | 43.3 ± 4.6 | 4.21 ± 0.35 | 39.5 ± 1.9 | 3.84 ± 0.55 |
Variables | N | Correlation Coefficient | Sig. (2-Tailed) |
---|---|---|---|
Wound size vs. wound position | 106 | 0.382 | 0.017 |
Wound size vs. wound intensity | 106 | −0.428 | 0.010 |
Wound position vs. wound intensity | 106 | −0.745 | 0.001 |
Length (mm) | Width (mm) | Area (cm2) | |
---|---|---|---|
Year 2016 | |||
Felling | 270.2 ± 86.1 a | 64.9 ± 28.8 a | 137.78 ± 32.72 a |
Extraction | 62.4 ± 9.8 b | 72.0 ± 10.0 a | 35.58 ± 6.47 b |
Total | 134.8 ± 18.5 | 69.6 ± 11.2 | 71.26 ± 7.86 |
Year 2019 | |||
Felling | 261.7 ± 35.3 a | 45.9 ± 22.5 b | 95.13 ± 21.80 a |
Extraction | 60.8 ± 10.3 b | 67.7 ± 16.7 a | 32.60 ± 5.67 b |
Total | 130.0 ± 20.3 | 60.0 ± 11.7 | 54.42 ± 6.05 |
Wound healing rate * | |||
Felling | 2.83 ± 0.30 a | 6.33 ± 1.02 a | 14.22 ± 2.26 a |
Extraction | 0.53 ± 0.21 b | 1.43 ± 0.20 b | 0.99 ± 0.22 b |
Total | 1.6 ± 0.28 | 3.2 ± 0.50 | 5.61 ± 0.43 |
Damage and Wound Characteristics | N-Paired | DG of Damaged Stems (mm year−1) | DG of Undamaged Stems (mm year−1) | RDG (%) | t-Paired | p-Value |
---|---|---|---|---|---|---|
Damage location | ||||||
Root | 26 | 8.05 ± 0.97b | 8.30 ± 0.64 | 3.01 | 2.195 | 0.038 * |
Bole | 106 | 8.48 ± 1.15a | 8.57 ± 0.45 | 1.05 | 0.820 | 0.414 |
Crown | 67 | 8.63 ± 1.31a | 8.80 ± 0.82 | 1.93 | 1.293 | 0.201 |
ANOVA | F = 5.39; p < 0.01 | |||||
Total | 196 | 8.48 ± 1.19 | 8.61 ± 0.64 | 1.71 | 1.891 | 0.060 |
Wound intensity | ||||||
Bark | 46 | 8.37 ± 1.08a | 8.42 ± 0.57 | 0.59 | 0.824 | 0.201 |
Cambium | 27 | 8.33 ± 1.04a | 8.49 ± 0.63 | 1.88 | 1.059 | 0.088 |
Wood | 33 | 6.63 ± 1.17b | 8.58 ± 0.66 | 22.73 | 19.174 | 0.000 ** |
ANOVA | F = 7.21; p < 0.01 | |||||
Wound condition | ||||||
Closed | 7 | 8.31 ± 0.32a | 8.34 ± 0.34 | 0.36 | 1.411 | 0.208 |
Open | 96 | 8.57 ± 1.13a | 8.58 ± 0.46 | 0.12 | 0.154 | 0.878 |
Decayed | 3 | 6.23 ± 1.03b | 8.58 ± 0.47 | 27.39 | 6.034 | 0.026 * |
ANOVA | F = 6.70; p < 0.01 |
Variables | N | R2-adjusted | SE | F | p-Value |
---|---|---|---|---|---|
DG-WI | 106 | 0.473 | 0.834 | 48.231 | <0.001 |
DG-WS | 106 | 0.186 | 0.974 | 11.851 | <0.001 |
DG-WH | 106 | 0.333 | 0.875 | 26.740 | <0.001 |
DG-WW | 106 | 0.613 | 0.673 | 79.879 | <0.001 |
DG-WL | 106 | 0.089 | 1.076 | 0.233 | 0.793 |
DGD- DBH | 106 | 0.736 | 0.230 | 148.573 | <0.001 |
DGU-DBH | 106 | 0.452 | 0.859 | 43.866 | <0.001 |
DG-WW/DBH | 106 | 0.593 | 0.687 | 148.754 | <0.001 |
Variables | WWHR (mm year−1) | DG (mm year−1) | ||
---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | |
Dbh-WI | 2.630 | 0.003 | 3.168 | 0.001 |
Dbh-WS | 1.313 | 0.214 | 2.635 | 0.003 |
Dbh-WH | 4.522 | 0.000 | 5.187 | 0.000 |
Dbh-WW | 2.653 | 0.002 | 2.677 | 0.002 |
WI-WS | 5.841 | 0.001 | 44.494 | 0.000 |
WI-WH | 7.289 | 0.000 | 60.024 | 0.000 |
WI-WW | 15.478 | 0.000 | 34.274 | 0.000 |
WS-WH | 5.440 | 0.001 | 44.842 | 0.000 |
WW-WH | 1.738 | 0.071 | 0.728 | 0.695 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavankar, F.; Nikooy, M.; Lo Monaco, A.; Latterini, F.; Venanzi, R.; Picchio, R. Short-Term Recovery of Residual Tree Damage during Successive Thinning Operations. Forests 2020, 11, 731. https://doi.org/10.3390/f11070731
Tavankar F, Nikooy M, Lo Monaco A, Latterini F, Venanzi R, Picchio R. Short-Term Recovery of Residual Tree Damage during Successive Thinning Operations. Forests. 2020; 11(7):731. https://doi.org/10.3390/f11070731
Chicago/Turabian StyleTavankar, Farzam, Mehrdad Nikooy, Angela Lo Monaco, Francesco Latterini, Rachele Venanzi, and Rodolfo Picchio. 2020. "Short-Term Recovery of Residual Tree Damage during Successive Thinning Operations" Forests 11, no. 7: 731. https://doi.org/10.3390/f11070731
APA StyleTavankar, F., Nikooy, M., Lo Monaco, A., Latterini, F., Venanzi, R., & Picchio, R. (2020). Short-Term Recovery of Residual Tree Damage during Successive Thinning Operations. Forests, 11(7), 731. https://doi.org/10.3390/f11070731