Verifying the Utility of Black Locust (Robinia pseudoacacia L.) in the Reclamation of a Lignite Combustion Waste Disposal Site in Central European Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Description of the Experiment
2.3. Soil Sampling and Analyses
2.4. Tree Foliage Sampling and Chemical Analyses
2.5. Assessment of Tree Growth Parameters
- (I)
- Good quality trees: slight curvatures allowed, straight trunk, pronounced top.
- (II)
- Medium quality trees: slight curvature, not always a pronounced top.
- (III)
- Poor quality trees: crooked trunk, bushy, two-branch, no apex.
- (I)
- Vital trees: pronounced top, pronounced green foliage colour, dense foliage.
- (II)
- Average vital trees: less pronounced tops, no significant thinning of the foliage.
- (III)
- Weakened trees: dying trees with stunted growth, thinned crown, discoloured foliage.
2.6. Statistical Analyses
3. Results
3.1. Basic Soil Parameters
3.2. Growth Parameters, Quality, and Vitality of Trees
3.3. Tree Foliage Nutrient Supply
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pandey, V.C.; Bajpai, O.; Singh, N. Plant regeneration potential in fly ash ecosystem. Urban For. Urban Green. 2016, 15, 40–44. [Google Scholar] [CrossRef]
- Weber, J.; Kocowicz, A.; Debicka, M.; Jamroz, E. Changes in soil morphology of Podzols affected by alkaline fly ash blown out from the dumping site of an electric power plant. J. Soils Sediments 2016, 17, 1852–1861. [Google Scholar] [CrossRef] [Green Version]
- Dellantonio, A.; Fitz, W.J.; Čustović, H.; Repmann, F.; Schneider, B.U.; Grünewald, H.; Gruber, V.; Zgorelec, Z.; Zerem, N.; Carter, C.; et al. Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environ. Pollut. 2008, 153, 677–686. [Google Scholar] [CrossRef]
- Haynes, R.J. Reclamation and revegetation of fly ash disposal sites—Challenges and research needs. J. Environ. Manag. 2009, 90, 43–53. [Google Scholar] [CrossRef]
- Ram, L.C.; Jha, S.K.; Tripathi, R.C.; Masto, R.E.; Selvi, V.A. Remediation of fly ash landfills through plantation. Remediat. J. 2008, 18, 71–90. [Google Scholar] [CrossRef]
- Juwarkar, A.A.; Jambhulkar, H.P. Restoration of fly ash dump through biological interventions. Environ. Monit. Assess. 2007, 139, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Krzaklewski, W.; Pietrzykowski, M.; Woś, B. Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecol. Eng. 2012, 49, 35–40. [Google Scholar] [CrossRef]
- Uzarowicz, Ł.; Zagorski, Z.; Mendak, E.; Bartmiński, P.; Szara, E.; Kondras, M.; Oktaba, L.; Turek, A.; Rogoziński, R. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis. Catena 2017, 157, 75–89. [Google Scholar] [CrossRef]
- Rai, U.N.; Pandey, K.; Sinha, S.; Singh, A.; Saxena, R.; Gupta, D. Revegetating fly ash landfills with Prosopis juliflora L.: Impact of different amendments and Rhizobium inoculation. Environ. Int. 2004, 30, 293–300. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Woś, B.; Pająk, M.; Wanic, T.; Krzaklewski, W.; Chodak, M. Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): Assessment of tree growth and nutrient status within 10 years of the experiment. Environ. Sci. Pollut. Res. 2018, 25, 17091–17099. [Google Scholar] [CrossRef] [Green Version]
- Pietrzykowski, M.; Woś, B.; Pająk, M.; Wanic, T.; Krzaklewski, W.; Chodak, M. The impact of alders (Alnus spp.) on the physico-chemical properties of technosols on a lignite combustion waste disposal site. Ecol. Eng. 2018, 120, 180–186. [Google Scholar] [CrossRef]
- Józefowska, A.; Woś, B.; Pietrzykowski, M.; Schlaghamerský, J. Colonisation by enchytraeids as a suitable indicator of successful biological reclamation of post-mining technosols using alders. Appl. Soil Ecol. 2020, 145, 103300. [Google Scholar] [CrossRef]
- Ashby, W.C.; Vogel, W.G.; Rogers, N.F. Black Locust in the Reclamation Equation; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1985.
- Vlachodimos, K.; Papatheodorou, E.M.; Diamantopoulos, J.; Monokrousos, N. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ. Monit. Assess. 2013, 185, 6921–6932. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Grünewald, H.; Böhm, C.; Quinkenstein, A.; Grundmann, P.; Eberts, J.; Von Wühlisch, G. Robinia pseudoacacia L.: A Lesser Known Tree Species for Biomass Production. BioEnergy Res. 2009, 2, 123–133. [Google Scholar] [CrossRef]
- Kanzler, M.; Böhm, C.; Freese, D. Impact of P fertilisation on the growth performance of black locust (Robinia pseudoacacia L.) in a lignite post-mining area in Germany. Ann. For. Res. 2015, 58, 1. [Google Scholar] [CrossRef]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Bigler, C.; Bräker, O.U.; Bugmann, H.; Dobbertin, M.; Rigling, A. Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosyst. 2006, 9, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Galiano, L.; Martínez-Vilalta, J.; Lloret, F. Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species. Ecosyst. 2010, 13, 978–991. [Google Scholar] [CrossRef]
- Pająk, M.; Krzaklewski, W.; Gawełek, P. Assessment of forest reclamation of a hard coal waste heap as exemplified by the “Brzeszcze” hard coal mine in Brzeszcze. Zeszyty Naukowe. Inżynieria Środowiska/Uniw. Zielonogórski 2013, 149, 68–78. [Google Scholar]
- Sopper, W.E. Final Report for Project PSU-01. In Revegetation of Abandoned Coal Refuse Banks; Penn State University: State College, PA, USA, 1992. [Google Scholar]
- Böhm, C.; Quinkenstein, A.; Freese, D. Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann. For. Res. 2011, 54, 215–227. [Google Scholar]
- Brinks, J.S.; Lhotka, J.M.; Barton, C.; Warner, R.C.; Agouridis, C. Effects of fertilization and irrigation on American sycamore and black locust planted on a reclaimed surface mine in Appalachia. For. Ecol. Manag. 2011, 261, 640–648. [Google Scholar] [CrossRef]
- Straker, K.C.; Quinn, L.D.; Voigt, T.B.; Lee, D.K.; Kling, G.J. Black Locust as a Bioenergy Feedstock: A Review. BioEnergy Res. 2015, 8, 1117–1135. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Ltd./Academic Press: London, UK, 2012. [Google Scholar]
- Lehmann, J.; Schroth, G. Nutrient leaching. In Trees, Crops and Soil Fertility—Concepts and Research Methods; Schroth, G., Sinclair, L., Eds.; CABI Publishing: Wallingford, UK, 2003. [Google Scholar]
- Tzvetkova, N.; Petkova, K. Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J. Environ. Boil. 2015, 36, 59–63. [Google Scholar]
- Epstein, E.; Bloom, A.J. Mineral Nutrition of Plants: Principles and Perspectives, 2nd ed.; Sinauer: Sunderland, MA, USA, 2005. [Google Scholar]
- Ferrari, A.E.; Wall, L.G. Nodulation and growth of black locust (Robinia pseudoacacia) on a desurfaced soil inoculated with a local Rhizobium isolate. Boil. Fertil. Soils 2006, 43, 471–477. [Google Scholar] [CrossRef]
- Nicolescu, V.-N.; Hernea, C.; Bakti, B.; Keserű, Z.; Antal, B.; Rédei, K. Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: A review. J. For. Res. 2018, 29, 1449–1463. [Google Scholar] [CrossRef]
- Jensen, R.R.; Brake, S.S.; Wolf, S.F.; Bekker, M.F.; Hardin, P.J.; Jackson, M.W. Chemical element concentrations in black locust (Robinia pseudoacacia L.) and green ash (Fraxinus pennsylvanica Marsh.) leaves at the reclaimed Green Valley coal Mine, Indiana, USA. Environ. Earth Sci. 2009, 60, 1391–1405. [Google Scholar] [CrossRef]
Variable | pH in H2O | pH in KCl | EC | Nt | St | K2O | P2O5 |
---|---|---|---|---|---|---|---|
(µS cm−1) | (g kg−1) | ||||||
Start up characteristics | 7.9 ± 0.0 a 1 | 7.6 ± 0.1 a | 98.70 ± 4.33 a | 0.22 ± 0.03 a | 0.14 ± 0.02 a | 0.13 ± 0.02 a | 0.02 ± 0.01 a |
Control | 7.8 ± 0.0 a | 7.2 ± 0.1 a | 78.25 ± 8.53 a | 0.25 ± 0.07 a | 0.11 ± 0.01 a | 0.08 ± 0.01 a | 0.05 ± 0.01 a |
250 kg/ha | 7.8 ± 0.1 a | 7.3 ± 0.1 a | 85.67 ± 9.06 a | 0.34 ± 0.09 a | 0.10 ± 0.01 a | 0.09 ± 0.01 a | 0.04 ± 0.00 a |
500 kg/ha | 7.8 ± 0.1 a | 7.3 ± 0.1 a | 88.33 ± 5.75 a | 0.32 ± 0.06 a | 0.07 ± 0.01 a | 0.09 ± 0.01 a | 0.05 ± 0.01 a |
Variant | Survival | D0 | H | Quality Class | Vitality Class | ||||
---|---|---|---|---|---|---|---|---|---|
I | II | III | I | II | III | ||||
(%) | (cm) | (%) | (%) | ||||||
Control | 100 ± 0 a | 2.8 ± 0.0 a | 209.0 ± 14.7 a | 0 ± 0 | 81 ± 10 a | 19 ± 10 a | 79 ± 2 a | 21 ± 2 a | 0 ± 0 |
250 kg/ha | 95 ± 3 a | 2.6 ± 0.2 a | 200.8 ± 13.8 a | 3 ± 2 a | 57 ± 8 a | 40 ± 6 a | 63 ± 14 a | 35 ± 13 a | 2 ± 2 a |
500 kg/ha | 100 ± 0 a | 2.6 ± 0.2 a | 203.5 ± 21.4 a | 3 ± 2 a | 59 ± 11 a | 38 ± 12 a | 66 ± 12 a | 29 ± 11 a | 5 ± 5 a |
Variant | N | S | P | K |
---|---|---|---|---|
(g kg−1) | ||||
Control | 30.30 ± 0.72 a | 1.89 ± 0.10 a | 1.28 ± 0.07 a | 5.02 ± 0.60 a |
250 kg ha−1 | 29.56 ± 0.32 a | 1.94 ± 0.21 a | 1.31 ± 0.04 a | 4.96 ± 0.28 a |
500 kg ha−1 | 28.85 ± 1.04 a | 1.78 ± 0.09 a | 1.30 ± 0.09 a | 4.96 ± 0.34 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woś, B.; Pająk, M.; Krzaklewski, W.; Pietrzykowski, M. Verifying the Utility of Black Locust (Robinia pseudoacacia L.) in the Reclamation of a Lignite Combustion Waste Disposal Site in Central European Conditions. Forests 2020, 11, 877. https://doi.org/10.3390/f11080877
Woś B, Pająk M, Krzaklewski W, Pietrzykowski M. Verifying the Utility of Black Locust (Robinia pseudoacacia L.) in the Reclamation of a Lignite Combustion Waste Disposal Site in Central European Conditions. Forests. 2020; 11(8):877. https://doi.org/10.3390/f11080877
Chicago/Turabian StyleWoś, Bartłomiej, Marek Pająk, Wojciech Krzaklewski, and Marcin Pietrzykowski. 2020. "Verifying the Utility of Black Locust (Robinia pseudoacacia L.) in the Reclamation of a Lignite Combustion Waste Disposal Site in Central European Conditions" Forests 11, no. 8: 877. https://doi.org/10.3390/f11080877
APA StyleWoś, B., Pająk, M., Krzaklewski, W., & Pietrzykowski, M. (2020). Verifying the Utility of Black Locust (Robinia pseudoacacia L.) in the Reclamation of a Lignite Combustion Waste Disposal Site in Central European Conditions. Forests, 11(8), 877. https://doi.org/10.3390/f11080877