The Brinell Method for Determining Hardness of Wood Flooring Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
Ball diameter | D = 10.0 mm |
Total load | P = 30.0 kG (F = 294.2 N, (F/D2 = 2.9) |
Partial load | P1 = 10.0 kG (98.07 N) |
Total load time | t = 60 s |
Number of measurements for each material | n = 12 |
Symbolic specification of test conditions | HBD → HB 10/294.2/60. |
- P = applied load in kilogram-force (kGf);
- D = diameter of indenter (mm);
- d = diameter of indentation (mm).
- H = depth of imprint under load (mm).
3. Results
4. Discussion
5. Conclusions
- The materials tested in terms of hardness can be divided into three groups: soft materials (G, H, I, J—beech, pine, peasantry, iroko), intermediate materials (A, B, C, D—merbau, common oak, maple, red oak), and very hard materials (E, F—HDF, plywood+). In soft materials, the highest percentage of plastic indentation in total deformation was observed (79–83%), in intermediate materials this percentage is 72–76%, and in hard materials 65%. Thus, hard materials show the highest ability, among the materials tested, to reduction of the depth of deformation automatically after load removal.
- The hardness measured from the indentation diameter (HBd) has, in each test case, a higher value than the hardness determined from the indentation depth (HBH). This is intuitive. However, this difference is not constant and ranges from about 18–21% for soft materials (samples G, H, I, J), through about 23–30% for medium-hard materials (samples A, B, C, D), up to 35–36% for hard pressed wood-based materials (samples E, F). Different plastic and elastic component shares in total deformation are the result of different density of the tested lignocellulosic materials.
- The measurement of the depth of the indentation is much faster to make and, above all, more unambiguous than the measurement of the indentation diameter. In addition, the “visual” measurement of the diameter of a ball’s indentation is subjective, as there is no clear border of the indentation in the case of wood materials. The depth of the indentation is determined unequivocally and with great accuracy, as it is based on the indications of the length sensor. It can be concluded that measuring the depth of the indentation gives more reliable hardness values.
- As the density of wood materials increases, their HB hardness also increases. This increase is linear in nature. The large scattering of hardness results may be since measurements were made on different (non-oriented) surfaces of both radial, tangential, and intermediate cross-sections. The significantly higher hardness values of sample F (plywood+) are due to the specific orientation of the wood fibers in this sample, causing hardness measurements to be carried out on the cross-sectional area of the veneer layers. This anatomical orientation of the veneers of the flooring material translates favorably into higher hardness of the floor made of it.
- Statistical analyzes revealed differences in hardness between the samples, but not in all cases, and the lack of differences between the samples is not necessarily related to the density of the sample.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kollmann, F. Technologie des Holzes, 1st ed.; Springer: Berlin, Germany, 1936. [Google Scholar]
- Holmberg, H. Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.). Holz als Roh- und Werkstoff 2000, 58, 91–95. [Google Scholar] [CrossRef]
- Riggio, M.; Piazza, M. Hardness Test. In In Situ Assessment of Structural Timber: State of the Art Report of the RILEM Technical Committee 215-AST; Kasal, B., Tannert, T., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 87–97. ISBN 978-94-007-0560-9. [Google Scholar]
- Klüppel, A. Instrumented macrohardness testing of wood. Int. Wood Prod. J. 2016, 7, 46–53. [Google Scholar] [CrossRef]
- Schwab, M.E. Die Härte von Laubhölzern für die Parkettherstellung. Holz Roh Werkst. 1990, 48, 47–51. [Google Scholar] [CrossRef]
- Niemz, P.; Stübi, T. Investigations of hardness measurements on wood based materials using a new universal measurement system. In Proceedings of the Symposium on Wood Machining, Properties of Wood and Wood Composites Related to Wood Machining, Vienna, Austria, 27–29 September 2000; Stanzl-Tschegg, S.E., Reiterer, A., Eds.; Christian-Doppler-Laboratory for Fundamentals of Wood Machining Institute of Meteorology and Physics, University of Agricultural Sciences: Vienna, Austria, 2000; pp. 51–61. [Google Scholar]
- Hirata, S.; Ohta, M.; Honma, Y. Hardness distribution on wood surface. J. Wood Sci. 2001, 47, 1–7. [Google Scholar] [CrossRef]
- Gindl, W.; Hansmann, C.; Gierlinger, N.; Schwanninger, M.; Hinterstoisser, B.; Jeronimidis, G. Using a water-soluble melamine-formaldehyde resin to improve the hardness of Norway spruce wood. J. Appl. Polym. Sci. 2004, 93, 1900–1907. [Google Scholar] [CrossRef]
- Rautkari, L.; Properzi, M.; Pichelin, F.; Hughes, M. Surface modification of wood using friction. Wood Sci. Technol. 2009, 43, 291. [Google Scholar] [CrossRef] [Green Version]
- Rautkari, L.; Kamke, F.A.; Hughes, M. Density profile relation to hardness of viscoelastic thermal compressed (VTC) wood composite. Wood Sci. Technol. 2011, 45, 693–705. [Google Scholar] [CrossRef]
- Laine, K.; Rautkari, L.; Hughes, M. The effect of process parameters on the hardness of surface densified Scots pine solid wood. Eur. J. Wood Wood Prod. 2013, 71, 13–16. [Google Scholar] [CrossRef]
- Lykidis, C.; Nikolakakos, M.; Sakellariou, E.; Birbilis, D. Assessment of a modification to the Brinell method for determining solid wood hardness. Mater. Struct. 2016, 49, 961–967. [Google Scholar] [CrossRef]
- EN 1534:2020. Wood Flooring and Parquet—Determination of Resistance to Indentation—Test Method; CEN-CENELEC Management Centre: Brussels, Belgium, 2020. [Google Scholar]
- Doyle, J.; Walker, J.C.F. Indentation hardness of wood. Wood Fiber Sci. 1985, 17, 369–376. [Google Scholar]
- Hill, R.; Storåkers, B.; Zdunek, A. A theoretical study of the Brinell hardness test. Proc. R. Soc. Lond. A Math. Phys. Sci. 1989, 423, 301–330. [Google Scholar]
- TIBCO StatisticaTM 13.5.0; TIBCO Software Inc.: Palo Alto, CA, USA, 2018.
- Kielmann, B.C.; Adamopoulos, S.; Militz, H.; Mai, C. Strength changes in ash, beech and maple wood modified with a N-methylol melamine compound and a metal-complex dye. Wood Res. 2013, 58, 343–350. [Google Scholar]
- Konnerth, J.; Eiser, M.; Jäger, A.; Bader, T.K.; Hofstetter, K.; Follrich, J.; Ters, T.; Hansmann, C.; Wimmer, R. Macro- and micro-mechanical properties of red oak wood (Quercus rubra L.) treated with hemicellulases. Holzforschung 2010, 64, 447–453. [Google Scholar] [CrossRef]
- Sonderegger, W.; Niemz, P. Untersuchungen zur Bestimmung der Brinellhärte an MDF-und HDF-Platten mittels Wegmessung. ETH Institut. Baustoffe 2001, 3. [Google Scholar] [CrossRef]
- Waitkus, C.; Richter, H. Die Robinie und ihr Holz; Johann Heinrich von Thünen-Institut. Bundesforschungsanstalt für Forst-und Holzwirtschaft (BFH): Hamburg, Germany, 2001. [Google Scholar]
- Eckstein, D. Technology for High Quality Products from Black Locust (Robinia pseudoacacia L.); University of Hamburg: Hamburg, Germany, 2000. [Google Scholar]
- Kontinen, P.; Nyman, C. Hardness of wood-based panel products and their coatings and overlays. Pap. Puu Pap. Tim. 1977, 59, 531. [Google Scholar]
- Heräjärvi, H. Variation of basic density and Brinell hardness within mature Finnish Betula pendula and B. pubescens stems. Wood Fiber Sci. 2004, 36, 216–227. [Google Scholar]
- Ylinen, A. Über den Einfluß der Rohwichte und des Spätholzanteils auf die Brinellhärte des Holzes. Holz Roh Werkst. 1943, 6, 125–127. [Google Scholar] [CrossRef]
Name | Latin Name | Specimen Designation | Thickness (mm) | Density (g/cm3) | Average Density (g/cm3) | Decription |
---|---|---|---|---|---|---|
Merbau | Intsia bijuga (Colebr.) Kuntze | A | 3.33 | 0.69 | 0.56 | Top layer |
Common spruce | Picea abies L. | 7.77 | 0.50 | Bottom layer | ||
Pedunculate oak | Quercus robur L. | B | 3.34 | 0.64 | 0.54 | Top layer |
Common spruce | Picea abies L. | 7.66 | 0.50 | Bottom layer | ||
Maple | Acer saccharum Marsh. | C | 3.33 | 0.68 | 0.55 | Top layer |
Common spruce | Picea abies L. | 7.74 | 0.50 | Bottom layer | ||
Red oak | Quercus rubra L. | D | 3.19 | 0.77 | 0.58 | Top layer |
Common spruce | Picea abies L. | 8.06 | 0.50 | Bottom layer | ||
HDF | - | E | 6.73 | - | 0.94 | One layer |
Vertical birch plywood | - | F | 3.60 | 0.69 | 0.56 | Top layer |
Common spruce | Picea abies L. | 7.50 | 0.50 | Bottom layer | ||
Common beech | Fagus sylvatica L. | G | - | - | 0.68 | One layer |
Pine | Pinus sylvestris L. | H | - | - | 0.56 | One layer |
Black locust | Robinia pseudoacacia L. | I | - | - | 0.69 | One layer |
Iroko | Milicia excelsa (Welw.) CC Berg | J | - | - | 0.50 | One layer |
Genus | Specimen Designation | Hbd | HG | HBH | HG | The Difference Between the Determined Hardness Values (1–HBH/Hbd) |
---|---|---|---|---|---|---|
Merbau | A | 4.04 ± 0.11 | d | 2.98 ± 0.08 | de | 26% |
Oak 1 | B | 2.84 ± 0.20 | b | 2.18 ± 0.12 | b | 23% |
Maple | C | 4.44 ± 0.37 | d | 3.12 ± 0.21 | ef | 30% |
Oak 2 | D | 3.56 ± 0.25 | c | 2.64 ± 0.15 | c | 26% |
HDF | E | 5.06 ± 0.35 | e | 3.30 ± 0.16 | f | 35% |
Plywood+ | F | 6.06 ± 0.47 | f | 3.87 ± 0.27 | g | 36% |
Beech | G | 2.88 ± 0.17 | b | 2.29 ± 0.12 | b | 20% |
Pine | H | 1.81 ± 0.12 | a | 1.43 ± 0.07 | a | 21% |
Robinia | I | 3.53 ± 0.44 | c | 2.80 ± 0.28 | cd | 21% |
Iroko | J | 1.99 ± 0.14 | a | 1.64 ± 0.09 | a | 18% |
HBd | |||||
Sum of Squares SS | Degrees of Freedom DOF | Mean Squares MS | Fisher’s F-Test | Sig. Level p | |
Intercept | 1576.152 | 1 | 1576.152 | 4986.932 | 0.00 |
Type of sample | 194.073 | 9 | 21.564 | 68.227 | 0.00 |
Error | 34.766 | 110 | 0.316 | ||
Total | 228.839 | ||||
HBH | |||||
Effect | Sum of Squares SS | Degrees of Freedom DOF | Mean Squares MS | Fisher’s F-Test | Sig. Level p |
Intercept | 830.8346 | 1 | 830.8346 | 7859.184 | 0.00 |
Type of sample | 63.2522 | 9 | 7.0280 | 66.481 | 0.00 |
Error | 11.6287 | 110 | 0.1057 | ||
Total | 74.8809 |
Genus | Specimen Designation | Total Indentation H (mm) | Spring Indentation X (mm) | Plastic Indentation H (mm) | The Share of A Plastic Indentation (H/H) |
---|---|---|---|---|---|
Merbau | A | 0.32 | 0.08 | 0.24 | 75% |
Common oak | B | 0.44 | 0.10 | 0.33 | 76% |
Maple | C | 0.31 | 0.09 | 0.23 | 72% |
Red oak | D | 0.36 | 0.09 | 0.27 | 75% |
HDF | E | 0.29 | 0.10 | 0.19 | 65% |
Plywood+ | F | 0.25 | 0.09 | 0.16 | 65% |
Beech | G | 0.42 | 0.08 | 0.34 | 80% |
Pine | H | 0.68 | 0.14 | 0.54 | 79% |
Robinia | I | 0.35 | 0.07 | 0.29 | 81% |
Iroko | J | 0.59 | 0.10 | 0.49 | 83% |
Hardness | HBd | HBH |
---|---|---|
Regression equation | y = −27,646 + 90,888·x | y = −11,155 + 53,558·x |
Correlation coefficient | 0.7846 | 0.7698 |
The coefficient of determination R2 | 0.6156 | 0.5926 |
Significance level p | 0.0000 | 0.0000 |
Genus | Specimen Designation | HBd (kG/mm2) | HBH (kG/mm2) | Literature |
---|---|---|---|---|
Merbau | A | 4.04 | 2.98 | HBd (10/500/30) = 33.2 MPa ≈ 3.42 kG/mm2 [5] |
Common oak | B | 2.84 | 2.18 | HBd (10/500/30) = 26.2 MPa ≈ 2.67 kG/mm2 [5] |
Maple | C | 4.44 | 3.12 | HBd (10/1000/nd) = 31–42 MPa ≈ 3.16–4.28 kG/mm2 [17] |
Red oak | D | 3.56 | 2.64 | HBd (5/120/nd) = 38 MPa ≈ 3.87 kG/mm2 [18] |
HDF | E | 5.06 | 3.30 | HBd (10/500/30) = 48.9 MPa ≈ 4.98 kG/mm2 [19] |
Plywood+ | F | 6.06 | 3.87 | - |
Beech | G | 2.88 | 2.29 | HBd (10/500/30) = 26.7 MPa ≈ 2.72 kG/mm2 [5] |
Pine | H | 1.81 | 1.43 | HBH (10/1000/25) = 13 MPa ≈ 1.33 kG/mm2 [11] |
Robinia | I | 3.53 | 2.80 | HBd (nd.) = 37 MPa ≈ 3.77 kG/mm2 [20] after [21] |
Iroko | J | 1.99 | 1.64 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sydor, M.; Pinkowski, G.; Jasińska, A. The Brinell Method for Determining Hardness of Wood Flooring Materials. Forests 2020, 11, 878. https://doi.org/10.3390/f11080878
Sydor M, Pinkowski G, Jasińska A. The Brinell Method for Determining Hardness of Wood Flooring Materials. Forests. 2020; 11(8):878. https://doi.org/10.3390/f11080878
Chicago/Turabian StyleSydor, Maciej, Grzegorz Pinkowski, and Anna Jasińska. 2020. "The Brinell Method for Determining Hardness of Wood Flooring Materials" Forests 11, no. 8: 878. https://doi.org/10.3390/f11080878
APA StyleSydor, M., Pinkowski, G., & Jasińska, A. (2020). The Brinell Method for Determining Hardness of Wood Flooring Materials. Forests, 11(8), 878. https://doi.org/10.3390/f11080878