Key Techniques for Somatic Embryogenesis and Plant Regeneration of Pinus koraiensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. EC Induction
2.1.1. Selection of Explant Source
2.1.2. Explant Sterilization Method
2.1.3. Screening of Medium Components
2.2. Proliferation and Maturation of the EC
2.2.1. Proliferation of the EC
2.2.2. Maturation of SEs
2.3. SEs Germination and Plant Regeneration
2.4. Transplanting and Acclimatization of Regenerated Plants
2.5. Microscopy Observation
2.6. Data Statistics and Analysis Methods
3. Results
3.1. Induction of EC
3.1.1. Development of Explants in Different Periods
3.1.2. EC Induction
3.2. Proliferation and Maturation of EC
3.2.1. Proliferation Experiment 1: Effect of PGRs on the Proliferation and Maturation of Korean Pine EC
3.2.2. Proliferation Experiment 2: The Effect of L-Glutamine on the Proliferation and Maturation of Korean Pine EC
3.3. SEs Germination and Plant Regeneration
4. Discussion
4.1. Initiation of EC
4.2. Multiplication and Maturation of EC
4.3. Germination of Mature SEs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2,4-D | 2,4-dichlorophenoxyacetic Acid |
6-BA | N6-benzyladenine |
ABA | Abscisic acid |
CH | Acid-hydrolyzed casein |
DCR | Basal culture medium (Gupta and Durzan 1985) |
DMSO | Dimethyl sulfoxide minimum |
mLV | Litvay medium (Litvay et al. 1985, modified by Hargreaves et al., 2009) |
NAA | 1-Naphthalacetic Acid |
SEs | Somatic embryos |
EC | Embryogenic lines |
PGRs | Plant growth regulator |
References
- Haque, S.M.; Ghosh, B. High-frequency somatic embryogenesis and artificial seeds for mass production of true-to-type plants inledebouria revoluta: An important cardioprotective plant. Plant Cell Tissue Organ Cult. 2016, 127, 71–83. [Google Scholar] [CrossRef]
- Shahzad, A.; Sharma, S.; Siddiqui, S.A. Somatic embryogenesis: A valuable strategy for phyto-climbing diversity conservation. In Biotechnological Strategies for the Conservation of Medicinal and Ornamental Climbers; Shahzad, A., Sharma, S., Siddiqui, S.A., Eds.; Springer: Cham, Germany, 2016; pp. 195–216. [Google Scholar]
- Monteuuis, O. Micropropagation and production of forest trees. In Vegetative Propagation of Forest Trees; Pack, Y.S., Bonga, J., Moon, H.K., Eds.; Elsevier: Suwon, Korea, 2016; pp. 32–55. [Google Scholar]
- Góngora-Castillo, E.; Nic-Can, G.I.; Galaz-Ávalos, R.M.; Loyola-Vargas, V.M. Elaboration of transcriptome during the induction of somatic embryogenesis. In Plant Cell Culture Protocols; Víctor, M., Loyola, V., Neftalí, O.A., Eds.; Springer: New York, NY, USA, 2018; pp. 411–427. [Google Scholar]
- Heringer, A.S.; Santa-Catarina, C.; Silveira, V. Insights from proteomic studies into plant somatic embryogenesis. Proteomics 2018, 18, 1700265. [Google Scholar] [CrossRef]
- Egertsdotter, U. Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on Conifers. Front. Plant Sci. 2019, 10, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelu-Walter, M.A.; Thompson, D.; Harvengt, L.; Sanchez, L.; Toribio, M.; Pâques, L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes 2013, 9, 883–899. [Google Scholar] [CrossRef]
- Tret’yakova, I.N.; Shuvaev, D.N. Somatic embryogenesis in Pinus pumila and productivity of embryogenic lines during long-term cultivation in vitro. Russ. J. Dev. Biol. 2015, 46, 276–285. [Google Scholar] [CrossRef]
- Liang, Y.; Shen, H.L.; Liu, C.P.; Yang, L.; Zhang, P. Comparison of methods for extracting high-throughput sequencing RNA from Korean pine seeds. J. For. Res. 2016, 27, 33–40. [Google Scholar] [CrossRef]
- Peng, C.X.; Gao, F.; Wang, H.; Shen, H.L.; Yang, L. Physiological and biochemical traits in Korean pine somatic embryogenesis. Forests 2020, 10, 577. [Google Scholar] [CrossRef]
- Yu, D.P.; Zhou, L.; Zhou, W.M.; Ding, H.; Wang, Q.W.; Wang, Y.; Wu, X.Q.; Dai, L.M. Forest management in Northeast China: History, problems, and challenges. Environ. Manag. 2011, 48, 1122–1135. [Google Scholar] [CrossRef]
- Tong, Y.W.; Durka, W.; Zhou, W.M.; Zhou, L.; Yu, D.P.; Dai, L.M. Ex situ conservation of pinus koraiensis can preserve genetic diversity but homogenizes population structure. For. Ecol. Manag. 2020, 465, 117820. [Google Scholar] [CrossRef]
- Bonga, J.M. A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers. Can. J. For. Res. 2015, 45, 1–5. [Google Scholar] [CrossRef]
- Lelu-Walter, M.A.; Gautier, F.; Eliášová, K.; Sanchez, L.; Teyssier, C.; Lomenech, A.M.; Metté, C.L.; Hargreaves, C.; Trontin, J.F.; Reeves, C. High gellan gum concentration and secondary somatic embryogenesis: Two key factors to improve somatic embryo development in Pseudotsuga menziesii. Plant Cell Tissue Organ Cult. 2018, 132, 137–155. [Google Scholar] [CrossRef]
- Jo, L.; Dos Santos, A.L.W.; Bueno, C.A.; Barbosa, H.R.; Floh, E.I.S. Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of araucaria angustifolia (brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiol. 2014, 34, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humánez, A.; Blasco, M.; Brisa, C.; Segura, J.; Arrillaga, I. Somatic embryogenesis from different tissues of spanish populations of maritime pine. Plant Cell Tissue Organ Cult. 2012, 111, 373–383. [Google Scholar] [CrossRef]
- Pullman, G.S.; Bucalo, K. Pine somatic embryogenesis using zygotic embryos as explants. In Plant Embryo Culture: Methods and Protocols; Thorpe, T.A., Yeung, E.C., Eds.; Springer: New York, NY, USA, 2011; pp. 267–291. [Google Scholar]
- Egertsdotter, U. Plant physiological and genetical aspects of the somatic embryogenesis process in conifers. Scan. J. For. Res. 2018, 34, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Pen, C.X.; Wang, H.; Shen, H.L.; Yand, L. Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. J. For. Res. 2020, 11, 577. [Google Scholar] [CrossRef]
- Park, S.Y.; Klimaszewska, K.; Park, J.Y.; Mansfield, S.D. Lodgepole pine: The first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol. 2010, 30, 1469. [Google Scholar] [CrossRef] [PubMed]
- Bozhkov, P.V.; Ahn, I.S.; Park, Y.G. Two alternative pathways of somatic embryo origin from polyembryonic mature stored seeds of pinus koraiensis, sieb et zucc. Can. J. Bot. 1997, 75, 509–512. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Noceda, C.; Pelletier, G.; Label, P.; Lelu-Walter, M.A. Biological characterization of young and aged embryogenic cultures of pinus pinaster (ait.). In Vitro Cell Dev. Plant. 2009, 45, 20–33. [Google Scholar] [CrossRef]
- Salaj, T.; Matušíková, I.; Fráterová, L.; Piršelová, B.; Salaj, J. Regrowth of embryogenic tissues of pinus nigra following cryopreservation. Plant Cell Tissue Organ Cult. 2011, 106, 55–61. [Google Scholar] [CrossRef]
- Litvay, J.D.; Verma, D.C.; Johnson, M.A. Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 1985, 4, 325–328. [Google Scholar] [CrossRef]
- Li, H.P. Plant Microscopy; Science Press: Beijing, China, 2009; pp. 2–47. [Google Scholar]
- Pullman, G.S.; Bucalo, K. Pine somatic embryogenesis: Analyses of seed tissue and medium to improve protocol development. New For. 2014, 45, 353–377. [Google Scholar] [CrossRef]
- Tretyakova, I.N.; Kudoyarova, G.R.; Park, M.E.; Kazachenko, A.S.; Shuklina, A.S.; Akhiyarova, G.R. Content and immunohistochemical localization of hormones during in vitro somatic embryogenesis in long-term proliferating larix sibirica cultures. Plant Cell Tissue Organ Cult. 2018, 136, 511–522. [Google Scholar] [CrossRef]
- Isah, T. Induction of somatic embryogenesis in woody plants. Acta Physiol. Plant T 2016, 38, 118. [Google Scholar] [CrossRef]
- Reeves, C.; Hargreaves, C.; Trontin, J.F.; Lelu-Walter, M.A. Simple and efficient protocols for the initiation andproliferation of embryogenic tissue of Douglas-fir. Trees 2017, 32, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Nunes, S.; Marum, L.; Farinha, N.; Pereira, V.T.; Almeida, T.; Sousa, D.; Mano, N.; Figueiredo, J.; Dias, M.C.; Santos, C. Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants. Plant Cell Tissue Organ Cult. 2018, 132, 71–84. [Google Scholar] [CrossRef]
- Ahn, C.H.; Han, J.Y.; Kim, Y.S.; Choi, Y.E. Propagation and cryopreservation of Ulleungdo hemlock (Tsuga ulleungensis) via somatic embryogenesis. Trees 2018, 32, 1801–1808. [Google Scholar] [CrossRef]
- Li, Q.F.; Deng, C.; Zhu, T.Q.; Ling, J.J.; Zhang, H.G.; Kong, L.S.; Zhang, S.G.; Wang, J.H.; Chen, X.Y. Dynamics of physiological and miRNA changes after long-term proliferation in somatic embryogenesis of Picea balfouriana. Trees 2019, 33, 469–480. [Google Scholar] [CrossRef]
- Li, Q.F.; Deng, C.; Xia, Y.; Kong, L.S.; Zhang, H.G.; Zhang, S.G.; Wang, J.H. Identification of novel mirnas and mirna expression profiling in embryogenic tissues of picea balfouriana treated by 6-benzylaminopurine. PLoS ONE 2017, 12, e0176112. [Google Scholar] [CrossRef]
- Jing, D.L.; Zhang, J.W.; Xia, Y.; Kong, L.S.; OuYang, F.G.; Zhang, S.G.; Zhang, H.G.; Wang, J.H. Proteomic analysis of stress-related proteins and metabolic pathways in picea asperata somatic embryos during partial desiccation. Plant. Biol. J. 2017, 15, 27–38. [Google Scholar]
- Alejandra, L.C.; Flinn, B.S.; Ulrika, E. Initiation of somatic embryogenesis from immature zygotic embryos of oocarpa pine (pinus oocarpa schiede ex schlectendal). Tree Physiol. 2011, 5, 539–554. [Google Scholar]
- Dobrowolska, I.; Businge, E.; Abreu, I.N.; Moritz, T.; Egertsdotter, U.; Plomion, C. Metabolome and transcriptome profiling reveal new insights into somatic embryo germination in norway spruce (picea abies). Tree Physiol. 2017, 37, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Merino, I.; Abrahamsson, M.; Larsson, E.; Von Arnold, S. Identification of molecular processes that differ among scots pine somatic embryogenic cell lines leading to the development of normal or abnormal cotyledonary embryos. Tree Genet. Genomes 2018, 14, 34. [Google Scholar] [CrossRef] [Green Version]
Treatments | Sucrose Concentration (g L−1) | NAA Concentration (μmol·L−1) | 6-BA Concentration (μmol·L−1) | CH (g L−1) | Total Explants | Induction Percentage (%) |
---|---|---|---|---|---|---|
1 | 25 | 8.06 | 2.22 | 0.3 | 125 | 20.87 ± 0.92 |
2 | 25 | 10.74 | 4.44 | 0.5 | 141 | 12.27 ± 1.26 |
3 | 25 | 13.43 | 6.66 | 0.8 | 136 | 11.66 ± 1.09 |
4 | 25 | 16.11 | 8.88 | 1.0 | 96 | 0.00 ± 0.00 |
5 | 30 | 8.06 | 4.44 | 0.8 | 97 | 14.48 ± 0.35 |
6 | 30 | 10.74 | 2.22 | 1.0 | 123 | 18.73 ± 1.22 |
7 | 30 | 13.43 | 8.88 | 0.3 | 132 | 12.17 ± 1.05 |
8 | 30 | 16.11 | 6.66 | 0.5 | 136 | 12.43 ± 1.05 |
9 | 35 | 8.06 | 6.66 | 1.0 | 138 | 21.80 ± 1.13 |
10 | 35 | 10.74 | 8.88 | 0.8 | 132 | 33.33 ± 0.69 |
11 | 35 | 13.43 | 2.22 | 0.5 | 88 | 13.65 ± 0.20 |
12 | 35 | 16.11 | 4.44 | 0.3 | 115 | 3.52 ± 1.34 |
13 | 40 | 8.06 | 8.99 | 0.5 | 157 | 11.05 ± 1.29 |
14 | 40 | 10.74 | 6.66 | 0.3 | 142 | 12.02 ± 1.13 |
15 | 40 | 13.43 | 8.88 | 1.0 | 154 | 11.63 ± 1.02 |
16 | 40 | 16.11 | 2.22 | 0.8 | 70 | 0.00 ± 0.00 |
Treatments | Sucrose Concentration (g L−1) | 2,4-D Concentration (μmoL·L−1) | 6-BA Concentration (μmoL·L−1) | CH (g L−1) | Total Explants | Induction Percentage (%) |
---|---|---|---|---|---|---|
1 | 25 | 18.1 | 2.22 | 0.3 | 96 | 11.65 ± 0.90 |
2 | 25 | 27.14 | 4.44 | 0.5 | 127 | 10.32 ± 1.33 |
3 | 25 | 36.2 | 6.66 | 0.8 | 69 | 11.66 ± 1.85 |
4 | 25 | 45.24 | 8.88 | 1.0 | 81 | 0.00 ± 0.00 |
5 | 30 | 18.1 | 4.44 | 0.8 | 72 | 12.57 ± 1.49 |
6 | 30 | 27.14 | 2.22 | 1.0 | 87 | 25.32 ± 1.51 |
7 | 30 | 36.2 | 8.88 | 0.3 | 103 | 11.63 ± 1.23 |
8 | 30 | 45.24 | 6.66 | 0.5 | 113 | 13.37 ± 1.00 |
9 | 35 | 18.1 | 6.66 | 1.0 | 102 | 23.54 ± 1.37 |
10 | 35 | 27.14 | 8.88 | 0.8 | 116 | 31.90 ± 1.23 |
11 | 35 | 36.2 | 2.22 | 0.5 | 112 | 12.42 ± 1.06 |
12 | 35 | 45.24 | 4.44 | 0.3 | 117 | 4.35 ± 1.28 |
13 | 40 | 18.1 | 8.99 | 0.5 | 130 | 11.60 ± 1.22 |
14 | 40 | 27.14 | 6.66 | 0.3 | 104 | 8.64 ± 1.21 |
15 | 40 | 36.2 | 8.88 | 1.0 | 119 | 9.29 ± 1.28 |
16 | 40 | 45.24 | 2.22 | 0.8 | 153 | 0.65 ± 0.65 |
Treatments | PGRs Concentration (μmol·L−1) | Proliferation Efficiency (%) | |||
---|---|---|---|---|---|
2,4-D | 6-BA | 001#-100 | 001#-1 | 001#-34 | |
1 | 9.04 | 4.4 | 617.00 ± 31.33 a | 524.00 ± 29.77 a | 605.00 ± 37.52 a |
2 | 4.52 | 2.2 | 483.00 ± 38.78 b | 414.00 ± 25.47 b | 496.00 ± 31.20 ab |
3 | 2.26 | 0.44 | 414.00 ± 29.97 b | 388.00 ± 23.64 b | 461.00 ± 39.03 b |
Treatments | PGRs Concentration (μmol·L−1) | Number of Cotyledon SEs of 3 Cell Lines (No./g−1FW) | |||
---|---|---|---|---|---|
2,4-D | 6-BA | 001#-100 | 001#-001 | 001#-034 | |
1 | 9.04 | 4.4 | 95.83 ± 7.68 b | 97.50 ± 11.46 a | 17.86 ± 5.36 b |
2 | 4.52 | 2.2 | 135.71 ± 13.48 a | 118.75 ± 13.21 a | 37.50 ± 6.46 a |
3 | 2.26 | 0.44 | 100.00 ± 13.31 ab | 91.67 ± 7.68 a | 27.08 ± 3.84 ab |
Treatments | L-glutamine Concentration (g L−1) | Proliferation Efficiency (%) | ||
---|---|---|---|---|
001#-100 | 001#-100 | 001#-034 | ||
1 | 0.5 | 467.50 ± 44.84 a | 410.00 ± 30.62 a | 492.50 ± 27.73 a |
2 | 1 | 481.25 ± 48.41 a | 396.25 ± 20.14 a | 487.50 ± 30.10 a |
3 | 1.5 | 455.00 ± 52.08 a | 408.75 ± 43.22 a | 455.00 ± 56.20 a |
Treatments | L-glutamine Concentration (g L−1) | Number of SEs of 3 Cell Lines (No./g−1FW) | ||
---|---|---|---|---|
001#-100 | 001#-001 | 001#-034 | ||
1 | 0.5 | 118.75 ± 10.83 b | 103.13 ± 7.86 b | 28.13 ± 9.38 a |
2 | 1 | 165.63 ± 5.98 a | 146.88 ± 5.98 a | 46.88 ± 7.86 a |
3 | 1.5 | 162.50 ± 5.10 a | 162.50 ± 5.10 a | 43.75 ± 6.25 a |
Cell Lines | Number of SEs (number) | Normal SEs Percentage (%) |
---|---|---|
001#-100 | 50 | 36.00 ± 5.10 |
001#-001 | 50 | 58.00 ± 5.83 |
001#-034 | 50 | 66.00 ± 8.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Peng, C.; Wang, H.; Tretyakova, I.N.; Nosov, A.M.; Shen, H.; Yang, L. Key Techniques for Somatic Embryogenesis and Plant Regeneration of Pinus koraiensis. Forests 2020, 11, 912. https://doi.org/10.3390/f11090912
Gao F, Peng C, Wang H, Tretyakova IN, Nosov AM, Shen H, Yang L. Key Techniques for Somatic Embryogenesis and Plant Regeneration of Pinus koraiensis. Forests. 2020; 11(9):912. https://doi.org/10.3390/f11090912
Chicago/Turabian StyleGao, Fang, Chunxue Peng, Hao Wang, Iraida Nikolaevna Tretyakova, Alexander Mikhaylovich Nosov, Hailong Shen, and Ling Yang. 2020. "Key Techniques for Somatic Embryogenesis and Plant Regeneration of Pinus koraiensis" Forests 11, no. 9: 912. https://doi.org/10.3390/f11090912
APA StyleGao, F., Peng, C., Wang, H., Tretyakova, I. N., Nosov, A. M., Shen, H., & Yang, L. (2020). Key Techniques for Somatic Embryogenesis and Plant Regeneration of Pinus koraiensis. Forests, 11(9), 912. https://doi.org/10.3390/f11090912