Penetration of Different Liquids in Wood-Based Composites: The Effect of Adsorption Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Measurement of Penetration Time
2.3. Measurement of Wetted Area
2.4. Density Functional Theory (DFT)
2.5. Statistical Analysis
3. Results
3.1. Penetration Time
3.2. Wetted Area
3.3. Density Functional Theory (DFT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taghiyari, H.R.; Majidi, R.; Esmailpour, A.; Sarvari Samadi, Y.; Jahangiri, A.; Papadopoulos, A.N. Engineering composites made from wood and chicken feather bonded with UF resin fortified with wollastonite: A novel approach. Polymers 2020, 12, 857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, A.N.; Gkaraveli, A. Dimensional stabilization and strength of particleboard by chemical modification with propionic anhydride. HolzalsRoh- Werkst. 2003, 61, 142–144. [Google Scholar] [CrossRef]
- Goodge, K.; Frey, M. Biotin-conjugated cellulose nanofibers prepared via copper-catalyzed alkyne-azide cycloaddition (CuAAC) “click” chemistry. Nanomaterials 2020, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
- Taghiyari, H.R.; Esmailpour, A.; Majidi, R.; Hassani, V.; Abdolah Mirzaei, R.; Farajpour Bibalan, O.; Papadopoulos, A.N. The effect of silver and copper nanoparticles as resin fillers on less-studies properties of UF-based particleboards. Wood Mater. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Platnieks, O.; Gaidukovs, S.; Barkane, A.; Sereda, A.; Gaidukova, G.; Grase, L.; Thakur, V.K.; Filipova, I.; Fridrihsone, V.; Skute, M.; et al. Bio-Based Poly(butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose-Based Sustainable Polymer Composites: Thermo-Mechanical and Biodegradation Studies. Polymers 2020, 12, 1472. [Google Scholar] [CrossRef] [PubMed]
- Shaoqiu, K.; Wang, Z.; Zhang, K.; Cheng, F.; Sun, J.; Wang, N.; Zhu, Y. Flexible conductive cellulose network-based composite hydrogel for multifunctional supercapacitors. Polymers 2020, 12, 1369. [Google Scholar]
- Hassani, V.; Papadopoulos, A.N.; Schmidt, O.; Maleki, S.; Papadopoulos, A.N. Mechanical and Physical Properties of Oriented Strand Lumber (OSL): The Effect of Fortification Level of Nanowollastonite on UF Resin. Polymers 2019, 11, 1884. [Google Scholar] [CrossRef] [Green Version]
- Taghiyari, H.R.; Esmailpour, A.; Majidi, R.; Morrell, J.J.; Mallaki, M.; Militz, H.; Papadopoulos, A.N. Potential Use of Wollastonite as a Filler in UF Resin Based Medium-Density Fiberboard (MDF). Polymers 2020, 12, 1435. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Taghiyari, H.R. Innovative wood surface treatments based on nanotechnology. Coatings 2019, 9, 866. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood composites and their polymer binders. Polymers 2020, 12, 1115. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, X.; Xie, X.; Yuan, Z.; Cai, S.; Li, Y. Effect of phenol formaldehyde resin penetration on the quasi-static and dynamic mechanics of wood cell walls using nanoindentation. Nanomaterials 2019, 9, 1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antov, P.; Savov, V.; Mantanis, G.; Neykov, N. Medium-density fibreboards bonded with phenol-formaldehyde resin and calcium lignosulfonate as an eco-friendly additive. Wood Mat. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Zorll, U. Neue Erkenntnisseüber die Bedeutung der Benetzungfür die AdhäsionbeiBeschichtungs- und Klebstoffen. Adhäsion 1978, 22, 320–325. [Google Scholar]
- Hse, C.Y. Wettability of southern pine veneer by phenol formaldehyde wood adhesives. For. Prod. J. 1972, 22, 51–56. [Google Scholar]
- Scheikl, M.; Dunky, M. Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface. Holzforschung 1998, 52, 89–94. [Google Scholar] [CrossRef]
- Scheikl, M.; Dunky, M. Softwareunterstütztestatische und dynamischeKontaktwinkelmeßmethodenbei der Benetzung von Holz. HolzalsRoh- Werkst. 1996, 54, 113–117. [Google Scholar] [CrossRef]
- Ozaki, T.; Kino, H.; Yu, J.; Han, M.J. User’s Manual of OpenMX Version 3.8. 2018. Available online: http://www.openmx-square.org/openmx_man3.8/openmx.html (accessed on 20 August 2018).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Kaith, B.S.; Mittal, H.; Jindal, R.; Maiti, M.; Kalia, S. Environment Benevolent Biodegradable Polymers: Synthesis, Biodegradability, and Applications. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Kalia, S., Kaith, B., Kaur, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Esmailpour, A.; Taghiyari, H.R.; Majidi, R.; Babaali, S.; Morrell, J.J.; Mohammadpanah, B. Effects of adsorption energy on air and liquid permeability of nanowollastonite-treated medium-density fiberboard. IEEE Trans. Instrum. Meas. 2020. [Google Scholar] [CrossRef]
- Siau, J.F. Wood: Influence of Moisture on Physical Properties; Department of Wood Science and Forest Products Virginian Polytechnic Institute and State University: Blacksburg, VA, USA, 1995. [Google Scholar]
- Siau, J.F. Transport Processes in Wood; Springer-Verlag: Berlin/Heidelberg, Germany; GmbH & Co. KG: Berlin, Germany, 2011. [Google Scholar]
- Skaar, C. Wood-Water Relations; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
Adsorption Distance and Energy | Water OHw … O | Ethyl Alcohol OHe … O | Kerosene CH … Ck |
---|---|---|---|
d (Å) | 1.39 | 1.40 | 1.67 |
Eads (eV) | −1.16 | −0.94 | −1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghiyari, H.R.; Majidi, R.; Arsalan, M.G.; Moradiyan, A.; Militz, H.; Ntalos, G.; Papadopoulos, A.N. Penetration of Different Liquids in Wood-Based Composites: The Effect of Adsorption Energy. Forests 2021, 12, 63. https://doi.org/10.3390/f12010063
Taghiyari HR, Majidi R, Arsalan MG, Moradiyan A, Militz H, Ntalos G, Papadopoulos AN. Penetration of Different Liquids in Wood-Based Composites: The Effect of Adsorption Energy. Forests. 2021; 12(1):63. https://doi.org/10.3390/f12010063
Chicago/Turabian StyleTaghiyari, Hamid R., Roya Majidi, Mahnaz Ghezel Arsalan, Asaad Moradiyan, Holger Militz, George Ntalos, and Antonios N. Papadopoulos. 2021. "Penetration of Different Liquids in Wood-Based Composites: The Effect of Adsorption Energy" Forests 12, no. 1: 63. https://doi.org/10.3390/f12010063
APA StyleTaghiyari, H. R., Majidi, R., Arsalan, M. G., Moradiyan, A., Militz, H., Ntalos, G., & Papadopoulos, A. N. (2021). Penetration of Different Liquids in Wood-Based Composites: The Effect of Adsorption Energy. Forests, 12(1), 63. https://doi.org/10.3390/f12010063