Cupressaceae Pollen in the City of Évora, South of Portugal: Disruption of the Pollen during Air Transport Facilitates Allergen Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Period
2.2. Airborne Pollen Sampling
2.3. Meteorological Parameters and Remote Sensing Data
2.4. Back Trajectory Analysis
2.5. Statistics Analysis
3. Results
3.1. Characterization of the Cupressaceae Pollen Season in Évora, South of Portugal
3.2. Daily Pollen Concentration and Daily Meteorological Parameters Affecting Pollen Integrity
3.3. Intra-Diurnal Variations of Pollen Concentration and Meteorological Parameters
3.4. Remote Sensing and Transport Modelling of Cupressaceae Airborne Pollen: Contribution for Pollen Concentration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulz, C.; Knopf, P.; Stützel, T. Identification key to the Cypress family (Cupressaceae). Feddes Repert. 2005, 116, 96–146. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Reveal, J.L.; Farjon, A.; Gardner, M.F.; Mill, R.R.; Chase, M.W. A new classification and linear sequence of extant gymnosperms. Phytotaxa 2011, 19, 55–70. [Google Scholar] [CrossRef]
- Farjon, A. The Kew Review: Conifers of the World. Kew Bull. 2018, 73, 8. [Google Scholar] [CrossRef] [Green Version]
- San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T.; Mauri, A.; Tinner, W.; Ballian, D.; Beck, P.; Birks, H.J.B.; Eaton, E.; et al. European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-36740-3. [Google Scholar]
- Instituto da Conservação da Natureza e das Florestas. I.P. Instituto de Conservação da Natureza e das Florestas. Available online: https://www.icnf.pt/ (accessed on 1 September 2020).
- Sociedade Portuguesa de Botânica Flora-On: Flora de Portugal Interactiva. Available online: https://flora-on.pt/ (accessed on 21 December 2020).
- Universidade de Trás-os-Montes e Alto Douro Jardim Botânico UTAD. Available online: https://jb.utad.pt/ (accessed on 21 December 2020).
- Hidalgo, P.J.; Galán, C.; Domínguez, E. Male phenology of three species of Cupressus: Correlation with airborne pollen. Trees Struct. Funct. 2003, 17, 336–344. [Google Scholar] [CrossRef]
- Khanduri, V.P.; Sharma, C.M. Development of groups of male strobili, anthesis and microsporangium dehiscence in Pinus roxburghii. Grana 2000, 39, 169–174. [Google Scholar] [CrossRef]
- Guardia, C.; Alba-Sánchez, F.; De Linares, C.; Nieto-Lugilde, D.; Caballero, J. Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (Southern Spain). JIACI J. Investig. Allergol. Clin. Immunol. 2006, 16, 24–33. [Google Scholar]
- Caeiro, E.; Penedos, C.; Carreiro-Martins, P.; Nunes, C.; Almeida, M.M.; Pedro, E.; Rodrigues-Alves, R.; Ferreira, M.B. Aerobiologia do pólen de Cupressáceas em Portugal. Rev. Port. Imunoalergologia 2020, 28, 19–30. [Google Scholar] [CrossRef]
- Antunes, C.M.; Costa, A.R.; Galveias, A.; Ribeiro, H.; Abreu, I.; Rodrigues, P.; Deus, R.; Saias, J. Pólen Alert. Available online: https://lince.di.uevora.pt/polen/index.jsp (accessed on 1 September 2020).
- Boutin-Forzano, S.; Gouitaa, M.; Hammou, Y.; Ramadour, M.; Charpin, D. Personal risk factors for cypress pollen allergy. Allergy Eur. J. Allergy Clin. Immunol. 2005, 60, 533–535. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy Eur. J. Allergy Clin. Immunol. 2007, 62, 976–990. [Google Scholar] [CrossRef]
- Perez-Badia, R.; Rapp, A.; Morales, C.; Sardinero, S.; Galan, C.; Garcia-Mozo, H. Pollen Spectrum and Risk of pollen allergy in central spain. Ann. Agric. Environ. Med. 2010, 17, 139–151. [Google Scholar]
- Rodriguez, O.; Célio, R.; Aboukhair, F.; Laurrabaquio, A.M.; Tinoca, I.T.; Cuevas, H.U.; Cruz Suaréz, M.A.; Cruz Marmolejo, M.A.; Reyes, M.C. Prueba cutánea con extractos alergénicos de pólenes y relación con signos clínicos de rinitis alérgica y asma bronquial en Camagüey, Cuba. Vaccimonitor 2013, 22, 9–13. [Google Scholar]
- Guerra, F.; Daza, J.C.; Miguel, R.; Moreno, C.; Galán, C.; Domínguez, E.; Sánchez Guijo, P. Sensitivity to Cupressus: Allergenic significance in Córdoba (Spain). J. Investig. Allergol. Clin. Immunol. 1996, 6, 117–120. [Google Scholar]
- Laaidi, M. Forecasting the start of the pollen season of Poaceæ: Evaluation of some methods based on meteorological factors. Int. J. Biometeorol. 2001, 45, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Galán, C.; Tormo, R.; Cuevas, J.; Infante, F.; Domínguez, E. Theoretical daily variation patterns of airborne pollen in the south-west of Spain. Grana 1991, 30, 201–209. [Google Scholar] [CrossRef]
- Ribeiro, H.; Oliveira, M.; Abreu, I. Intradiurnal variation of allergenic pollen in the city of Porto (Portugal). Aerobiologia 2008, 24, 173–177. [Google Scholar] [CrossRef]
- Tortajada, B.; Mateu, I. Concentraciones de polen de cupresáceas en la atmósfera de Valencia (Este de España) y su relación con los parámetros meteorológicos—Dialnet. Polen 2008, 18, 51–59. [Google Scholar]
- Aira, M.J.; Dopazo, A.; Jato, M.V. Aerobiological monitoring of Cupressaceae pollen in Santiago de Compostela (NW Iberian Peninsula) over six years. Aerobiologia 2001, 17, 319–325. [Google Scholar] [CrossRef]
- Taylor, P.E.; Flagan, R.C.; Valenta, R.; Glovsky, M.M. Release of allergens as respirable aerosols: A link between grass pollen and asthma. J. Allergy Clin. Immunol. 2002, 109, 51–56. [Google Scholar] [CrossRef]
- Taylor, P.E.; Flagan, R.C.; Miguel, A.G.; Valenta, R.; Glovsky, M.M. Birch pollen rupture and the release of aerosols of respirable allergens. Clin. Exp. Allergy 2004, 34, 1591–1596. [Google Scholar] [CrossRef]
- Galán, C.; Antunes, C.; Brandao, R.; Torres, C.; Garcia-Mozo, H.; Caeiro, E.; Ferro, R.; Prank, M.; Sofiev, M.; Albertini, R.; et al. Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy 2013, 68, 809–812. [Google Scholar] [CrossRef] [Green Version]
- Thien, F.; Beggs, P.J.; Csutoros, D.; Darvall, J.; Hew, M.; Davies, J.M.; Bardin, P.G.; Bannister, T.; Barnes, S.; Bellomo, R.; et al. The Melbourne epidemic thunderstorm asthma event 2016: An investigation of environmental triggers, effect on health services, and patient risk factors. Lancet Planet. Health 2018, 2, e255–e263. [Google Scholar] [CrossRef]
- Instituto Português do Mar e da Atmosfera. Available online: http://www.ipma.pt/pt/index.html/ (accessed on 30 November 2020).
- Galán Soldevilla, C. Spanish Aerobiology Network (REA): Management and Quality Manual; Servicio de Publicaciones, Universidad de Córdoba: Córdoba, Spain, 2007; ISBN 9788469063538. [Google Scholar]
- Galán, C.; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R. Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia 2014, 30, 385–395. [Google Scholar] [CrossRef]
- Nilsson, S.; Persson, S. Tree pollen spectra in the stockholm region (sweden), 1973–1980. Grana 1981, 20, 179–182. [Google Scholar] [CrossRef]
- Andersen, T.B. A model to predict the beginning of the pollen season. Grana 1991, 30, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Scientific Campbell CR1000 Measurement and Control System. Available online: https://s.campbellsci.com/documents/br/manuals/cr1000.pdf (accessed on 21 December 2020).
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2016, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 5. [Google Scholar]
- Palma, P.; Fialho, S.; Lima, A.; Novais, M.H.; Costa, M.J.; Montemurro, N.; Pérez, S.; de Alda, M.L. Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment. Sci. Total Environ. 2020, 709, 136205. [Google Scholar] [CrossRef]
- Bunderson, L.D.; de Water, P.; Wells, H.; Levetin, E. Predicting and quantifying pollen production in Juniperus ashei forests. Phytologia 2012, 94, 417–438. [Google Scholar]
- Charpin, D.; Pichot, C.; Belmonte, J.; Sutra, J.P.; Zidkova, J.; Chanez, P.; Shahali, Y.; Sénéchal, H.; Poncet, P. Cypress Pollinosis: From Tree to Clinic. Clin. Rev. Allergy Immunol. 2019, 56, 174–195. [Google Scholar] [CrossRef]
- Tsilingiris, P.T. Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C. Energy Convers. Manag. 2008, 49, 1098–1110. [Google Scholar] [CrossRef]
- Gregory, P.H. Distribution of airborne pollen and spores and their long distance transport. Pure Appl. Geophys. 1978, 116, 309–315. [Google Scholar] [CrossRef]
- Duhoux, E. Mechanism of exine rupture in hydrated taxoid type of pollen. Grana 1982, 21, 1–7. [Google Scholar] [CrossRef]
- Bortenschlager, S. Aspects of pollen morphology in the cupressaceae. Grana 1990, 29, 129–138. [Google Scholar] [CrossRef]
- Sofiev, M.; Belmonte, J.; Gehrig, R.; Izquierdo, R.; Smith, M.; Dahl, A.; Siljamo, P. Airborne pollen transport. In Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts; Springer: Dordrecht, The Netherlands, 2013; Volume 9789400748811, pp. 127–159. ISBN 9789400748811. [Google Scholar]
- Chichiriccò, G.; Pacini, E. Cupressus arizonica pollen wall zonation and in vitro hydration. Plant Syst. Evol. 2008, 270, 231–242. [Google Scholar] [CrossRef]
- Knox, R.B. Grass pollen, thunderstorms and asthma. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 1993, 23, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Buters, J.; Prank, M.; Sofiev, M.; Pusch, G.; Albertini, R.; Annesi-Maesano, I.; Antunes, C.; Behrendt, H.; Berger, U.; Brandao, R.; et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season the HIALINE working group. J. Allergy Clin. Immunol. 2015, 136, 87–95. [Google Scholar] [CrossRef]
- Aloisi, I.; Del Duca, S.; De Nuntiis, P.; Vega Maray, A.M.; Mandrioli, P.; Gutiérrez, P.; Fernández-González, D. Behavior of profilins in the atmosphere and in vitro, and their relationship with the performance of airborne pollen. Atmos. Environ. 2018, 178, 231–241. [Google Scholar] [CrossRef]
- Cresti, M.; Linskens, H.F. Pollen-allergy as an ecological phenomenon: A review. Plant Biosyst. 2000, 134, 341–352. [Google Scholar] [CrossRef]
- Sicard, M.; Izquierdo Miguel, R.; Alarcón Jordán, M.; Belmonte Soler, J.; Comerón Tejero, A.; Baldasano Recio, J.M. Near-surface and columnar measurements with a micro pulse lidar of atmospheric pollen in Barcelona, Spain. Atmos. Chem. Phys. 2016, 16, 6805–6821. [Google Scholar] [CrossRef] [Green Version]
- Malico, I.; Pereira, S.N.; Costa, M.J. Black carbon trends in southwestern Iberia in the context of the financial and economic crisis. The role of bioenergy. Environ. Sci. Pollut. Res. 2017, 24, 476–488. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, S.; Maya-Manzano, J.M.; Colín, A.M.; Pecero-Casimiro, R.; Buters, J.; Oteros, J. Understanding hourly patterns of Olea pollen concentrations as tool for the environmental impact assessment. Sci. Total Environ. 2020, 736, 139363. [Google Scholar] [CrossRef] [PubMed]
- Rojo, J.; Rapp, A.; Lara, B.; Fernández-González, F.; Pérez-Badia, R. Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Sci. Total Environ. 2015, 538, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Levetin, E. A long-term study of winter and early spring tree pollen in the Tulsa, Oklahoma atmosphere. Aerobiologia 1998, 14, 21–28. [Google Scholar] [CrossRef]
- Mohanty, R.P.; Buchheim, M.A.; Anderson, J.; Levetin, E. Molecular analysis confirms the long-distance transport of Juniperus ashei pollen. PLoS ONE 2017, 12, e0173465. [Google Scholar] [CrossRef] [Green Version]
- Rogers, C.A.; Levetin, E. Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. Int. J. Biometeorol. 1998, 42, 65–72. [Google Scholar] [CrossRef]
- Docampo, S.; Recio, M.; Trigo, M.M.; Melgar, M.; Cabezudo, B. Risk of pollen allergy in Nerja (southern Spain): A pollen calendar. Aerobiologia 2007, 23, 189. [Google Scholar] [CrossRef]
- Sassen, K. Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff. Geophys. Res. Lett. 2008, 35, L18810. [Google Scholar] [CrossRef]
- Bohlmann, S.; Shang, X.; Giannakaki, E.; Filioglou, M.; Saarto, A.; Romakkaniemi, S.; Komppula, M. Detection and characterization of birch pollen in the atmosphere using a multiwavelength Raman polarization lidar and Hirst-type pollen sampler in Finland. Atmos. Chem. Phys. 2019, 19, 14559–14569. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Giannakaki, E.; Bohlmann, S.; Filioglou, M.; Saarto, A.; Ruuskanen, A.; Leskinen, A.; Romakkaniemi, S.; Komppula, M. Airborne pollen observations using a multi-wavelength Raman polarization lidar in Finland: Characterization of pure pollen types. Atmos. Chem. Phys. Discuss. 2020. [Google Scholar] [CrossRef]
- Richardson, S.C.; Mytilinaios, M.; Foskinis, R.; Kyrou, C.; Papayannis, A.; Pyrri, I.; Giannoutsou, E.; Adamakis, I.D.S. Bioaerosol detection over Athens, Greece using the laser induced fluorescence technique. Sci. Total Environ. 2019, 696, 133906. [Google Scholar] [CrossRef]
Meteorological Parameters | 2017 | 2018 | Stat. Sig. |
---|---|---|---|
Maximum temperature, Tmax (°C) | 20.0 ± 3.9 | 16.43 ± 1.65 | p = 0.0002 ** |
Minimum temperature, Tmin (°C) | 10.0 ± 2.2 | 7.9 ± 2.3 | p = 0.002 ** |
Mean temperature, Tmean (°C) | 14.3 ± 2.8 | 11.6 ± 1.8 | p = 0.0003 ** |
Precipitation (accumulated, mm) | 28.3 | 329.9 | - |
Relative humidity, RH (%) | 63.5 ± 14.2 | 75.1 ± 15.7 | p = 0.001 ** |
Global Solar radiation, Global Srad (W/m2) | 175.0 ± 61.7 | 130.1 ± 59.6 | p = 0.006 ** |
Wind speed, WS (m/s) | 2.2 ± 0.9 | 2.0 ± 0.5 | p = 0.811 |
Wind direction, WD (°) | SW-NE | S-W | p = 0.176 |
Atmospheric pressure, AtP (hPa) | 986.7 ± 4.3 | 973.0 ± 6.6 | p = 6.573 × 10–9 ** |
Tmax (°C) | Tmin (°C) | Tmean (°C) | Precipt. (mm) | RH (%) | Global Srad (W/m2) | AtP (hPa) | WS (m/s) | WD (°) | Pollen disr. (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Tmax (°C) | 1.000 | 0.371 * | 0.768 * | −0.355 * | −0.573 * | 0.672 * | 0.549 * | −0.089 | −0.360 * | −0.565 * |
Tmin (°C) | 1.000 | 0.188 | −0.047 | 0.010 | −0.014 | −0.212 | −0.105 | −0.25 | −0.342 * | |
Tmean (°C) | 1.000 | −0.171 | −0.282 * | 0.338 * | 0.639 * | 0.131 | −0.350 * | −0.484 * | ||
Precipt.(mm) | 1.000 | 0.535 * | −0.518 * | −0.634 * | −0.083 | 0.018 | 0.371 * | |||
RH (%) | 1.000 | −0.800 * | −0.383 | −0.114 | 0.426 * | 0.448 * | ||||
Global Srad (W/m2) | 1.000 | 0.479 * | 0.120 | −0.214 | −0.501 * | |||||
AtP (hPa) | 1.000 | 0.048 | 0.008 | −0.519 * | ||||||
WS (m/s) | 1.000 | 0.024 | −0.077 | |||||||
WD (°) | 1.000 | 0.136 | ||||||||
Pollen disr. (%) | 1.000 |
Components Variances | Proportion of Variance | Cumulative Proportion | |
---|---|---|---|
1 | 4.178 | 41.78 | 41.78 |
2 | 1.719 | 17.19 | 58.97 |
3 | 1.165 | 11.65 | 70.63 |
4 | 1.081 | 10.81 | 81.44 |
5 | 0.611 | 6.11 | 87.55 |
6 | 0.539 | 5.39 | 92.95 |
7 | 0.323 | 3.23 | 96.18 |
8 | 0.177 | 1.77 | 97.96 |
9 | 0.144 | 1.44 | 99.40 |
10 | 0.059 | 0.59 | 100 |
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
% Pollen disruption | −0.362 | −0.106 | −0.209 | 0.084 |
Tmax (°C) | 0.421 | −0.271 | 0.170 | 0.111 |
Tmean (°C) | 0.353 | −0.128 | 0.556 | −0.105 |
Tmin (°C) | 0.019 | −0.665 | 0.119 | 0.070 |
Precipitation(mm) | −0.315 | −0.336 | 0.236 | −0.290 |
RH (%) | −0.379 | 0.0315 | 0.494 | 0.090 |
GlobalSrad (W/m2) | 0.398 | 0.035 | −0.326 | −0.070 |
AtP (hPa) | 0.369 | 0.279 | 0.274 | 0.103 |
WS (m/s) | 0.036 | 0.106 | 0.009 | −0.921 |
WD (°) | −0.162 | 0.499 | 0.346 | 0.087 |
25 February 2017 | 27 February 2017 | 25 February 2018 | 26 February 2018 | |
---|---|---|---|---|
DPC (pollen/m3) | 1635.0 | 938.0 | 185.0 | 644.0 |
Ruptured pollen (%) | 42.5 | 34.3 | 23.2 | 75.3 |
Tmax (°C) | 18.9 | 16.9 | 19.0 | 18.2 |
Tmin (°C) | 7.5 | 10.1 | 6.7 | 7.3 |
Tmean (°C) | 12.9 | 12.5 | 12.3 | 11.1 |
Rainfall (mm) | 0.0 | 1.0 | 0.0 | 5.4 |
RH (%) | 76.3 | 75.5 | 54.1 | 76.5 |
Global Srad(W/m2) | 145.1 | 99.7 | 209.4 | 96.0 |
AtP (hPa) | 987.4 | 987.2 | 977.4 | 972.4 |
WS (m/s) | 1.2 | 1.3 | 1.9 | 1.3 |
WD (°) | W-SW | W-SW | E | NE |
T (°C) | RH (%) | Global Srad (W/m2) | AtP (hPa) | WS (m/s) | Pollen Disruption (%) | HPI (Pollen/m3) | |
---|---|---|---|---|---|---|---|
T (°C) | 1.000 | −0.701 * | 0.848 * | 0.395 * | −0.218 | −0.225 | 0.409 * |
RH (%) | 1.000 | −0.785 * | 0.262 | −0.323 | −0.007 | −0.109 | |
Global Srad (W/m2) | 1.000 | 0.147 | −0.064 | −0.222 | 0.286 | ||
AtP (hPa) | 1.000 | −0.714 * | −0.587 * | 0.407 * | |||
WS (m/s) | 1.000 | 0.451 * | −0.227 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galveias, A.; Costa, A.R.; Bortoli, D.; Alpizar-Jara, R.; Salgado, R.; Costa, M.J.; Antunes, C.M. Cupressaceae Pollen in the City of Évora, South of Portugal: Disruption of the Pollen during Air Transport Facilitates Allergen Exposure. Forests 2021, 12, 64. https://doi.org/10.3390/f12010064
Galveias A, Costa AR, Bortoli D, Alpizar-Jara R, Salgado R, Costa MJ, Antunes CM. Cupressaceae Pollen in the City of Évora, South of Portugal: Disruption of the Pollen during Air Transport Facilitates Allergen Exposure. Forests. 2021; 12(1):64. https://doi.org/10.3390/f12010064
Chicago/Turabian StyleGalveias, Ana, Ana R. Costa, Daniele Bortoli, Russell Alpizar-Jara, Rui Salgado, Maria João Costa, and Célia M. Antunes. 2021. "Cupressaceae Pollen in the City of Évora, South of Portugal: Disruption of the Pollen during Air Transport Facilitates Allergen Exposure" Forests 12, no. 1: 64. https://doi.org/10.3390/f12010064
APA StyleGalveias, A., Costa, A. R., Bortoli, D., Alpizar-Jara, R., Salgado, R., Costa, M. J., & Antunes, C. M. (2021). Cupressaceae Pollen in the City of Évora, South of Portugal: Disruption of the Pollen during Air Transport Facilitates Allergen Exposure. Forests, 12(1), 64. https://doi.org/10.3390/f12010064