The Value of Hybrid Aspen Coppice Investment under Different Discount Rate, Price and Management Scenarios: A Case Study of Estonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forest Management Strategies for Hybrid Aspen Coppice Stands
- Energy wood coppicing with repeated 5-year cycles without thinning;
- Corridor thinning (2 m wide corridors were cut systematically, leaving 1 m wide uncut strips of trees, where an initial density (94,000 trees ha−1) was reduced by about 67%);
- Cross-corridor thinning (2 m wide corridors were cut systematically in two perpendicular directions systematically, leaving 1 m × 1 m uncut patches, with an initial density reduction by about 89%);
- single-tree thinning (selective cutting with an initial density reduction by about 97%).
2.2. Growths and Assortment Volumes in Case of Different Management Scenarios
- Trees were assigned stem diameter classes [36];
- Height was estimated for each diameter class [36];
- As the stem taper equation considers stem diameters over bark, necessary corrections were applied to obtain stem diameters and volumes under bark [36];
- The wood assortments from all diameter classes were summed up to obtain their volumes at the stand level (m3 ha−1).
2.3. Costs
2.4. Revenues
- The first quartile of the historic price;
- The second quartile (i.e., median) of the historic price;
- The third quartile of the historic price;
- The minimum historic price;
- The maximum historic price.
2.5. LEV
3. Results
3.1. Production of Wood Assortments under Different Management Scenarios
3.2. LEVs for Different Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank. A Clean Plant for all. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy. Brussels. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0773&from=EN (accessed on 6 September 2021).
- European Commission. Innovating for Sustainable Growth. A Bioeconomy for Europe; European Commission: Luxembourg, 2012; 59p, Available online: https://publications.europa.eu/en/publication-detail/-/publication/1f0d8515-8dc0-4435-ba53-9570e47dbd51 (accessed on 6 September 2021).
- Proskurina, S.; Sikkema, R.; Heinimö, J.; Vakkilainen, E. Five years left—How are the EU member states contributing to the 20% target for EUˈs renewable energy consumption; the role of woody biomass. Biomass Bioenergy 2016, 95, 64–77. [Google Scholar] [CrossRef]
- The European Green Deal. Communication from the Commission, Brussels. 2019. Available online: https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf (accessed on 6 September 2021).
- Weih, M. Intensive short rotation forestry in boreal climates: Present and future perspectives. Can. J. For. Res. 2004, 34, 369–1378. [Google Scholar] [CrossRef]
- Mola-Yudego, B.; Arevalo, J.; Díaz-Yáñez, O.; Dimitriou, I.; Haapala, A.; Ferraz Filho, A.C.; Selkimäki, M.; Valbuena, R. Wood biomass potentials for energy in northern Europe: Forest or plantations? Biomass Bioenergy 2017, 106, 95–103. [Google Scholar] [CrossRef]
- Rytter, L.; Ingerslev, M.; Kilpeläinen, A.; Torssonen, P.; Lazdina, D.; Löf, M.; Madsen, P.; Muiste, P.; Stener, L.-G. Increased forest biomass production in the Nordic and Baltic countries—A review on current and future opportunities. Silva Fenn. 2016, 50, 1660. [Google Scholar] [CrossRef] [Green Version]
- Tullus, H.; Tullus, A.; Rytter, L. Short-rotation forestry for supplying biomass for energy production. In Forest BioEnergy Production: Management, Carbon Sequestration and Adaptation; Kellomäki, S., Kilpeläinen, A., Ashraful, A., Eds.; Springer: New York, NY, USA; Heidelberg, Germany; Dordercht, The Netherlands; London, UK, 2013; pp. 39–56. [Google Scholar]
- Tullus, A.; Rytter, L.; Tullus, T.; Weih, M.; Tullus, H. Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand. J. For. Res. 2012, 27, 10–29. [Google Scholar] [CrossRef]
- Hytönen, J. Biomass, nutrient content and energy yield of short-rotation hybrid aspen (P. tremula × P. tremuloides) coppice. For. Ecol. Manag. 2018, 413, 21–31. [Google Scholar] [CrossRef]
- Fahlvik, N.; Rytter, L.; Stener, L.-G. Production of hybrid aspen on agricultural land during one rotation in southern Sweden. J. For. Res. 2019, 32, 181–189. [Google Scholar] [CrossRef]
- Rytter, L.; Stener, L.-G. Growth and thinning effects during a rotation period of hybrid aspen in southern Sweden. Scandinavian J. For. Res. 2014, 29, 747–756. [Google Scholar] [CrossRef]
- Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Tullus, H. The impact of former land-use type to above-and below-ground C and N pools in short-rotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations in hemiboreal conditions. For. Ecol. Manag. 2016, 378, 79–90. [Google Scholar] [CrossRef]
- Tullus, T.; Tullus, A.; Roosaluste, E.; Lutter, R.; Tullus, H. Vascular plant and bryophyte flora in midterm hybrid aspen plantations on abandoned agricultural land. Can. J. For. Res. 2015, 45, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Randlane, T.; Tullus, T.; Saag, A.; Lutter, R.; Tullus, A.; Helm, A.; Tullus, T.; Pärtel, M. Diversity of lichens and bryophytes in hybrid aspen plantations in Estonia depends on landscape structure. Can. J. For. Res. 2017, 47, 1202–1214. [Google Scholar] [CrossRef]
- Tullus, A.; Lukason, O.; Vares, A.; Padari, A.; Lutter, R.; Tullus, T.; Karoles, K.; Tullus, H. Economics of hybrid aspen (Populus tremula L. × P. tremuloides Michx.) and silver birch (Betula pendula Roth) plantations on abandoned agricultural lands in Estonia. Balt. For. 2012, 18, 288–298. [Google Scholar]
- Dimitriou, I.; Rosenqvist, H.; Berndes, G. Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass Bioenergy 2011, 35, 4613–4618. [Google Scholar] [CrossRef]
- Rytter, L.; Rytter, R.-M. Productivity and sustainability of hybrid aspen (Populus tremula L. × P. tremuloides Michx.) root sucker stands with varying management strategies. For. Ecol. Manag. 2017, 401, 223–232. [Google Scholar] [CrossRef]
- Hepner, H.; Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Tullus, H. Effect of Early Thinning Treatments on Above-Ground Growth, Biomass Production, Leaf Area Index and Leaf Growth Efficiency in a Hybrid Aspen Coppice Stand. BioEnergy Res. 2020, 13, 197–209. [Google Scholar] [CrossRef]
- Rytter, L. A management regime for hybrid aspen stands combining conventional forestry techniques with early biomass harvests to exploit their rapid early growth. For. Ecol. Manag. 2006, 236, 422–426. [Google Scholar] [CrossRef]
- Mc Carthy, R.; Rytter, L. Productivity and thinning effects in hybrid aspen root sucker stands. For. Ecol. Manag. 2015, 354, 215–223. [Google Scholar] [CrossRef]
- Ulvcrona, K.A.; Bergström, D.; Bergsten, U. Stand structure after thinning in 1–2 m wide corridors in young dense stands. Silva Fenn. 2017, 51, 1563. [Google Scholar] [CrossRef] [Green Version]
- Witzell, J.; Bergström, D.; Bergsten, U. Variable corridor thinning—A cost-effective key to provision of multiple ecosystem services from young boreal conifer forests? Scand. J. For. Res. 2019, 34, 497–507. [Google Scholar] [CrossRef]
- Bergström, D.; Di Fulvio, F. Comparison of the cost and energy efficiencies of present and future biomass supply systems for young dense forests. Scand. J. For. Res. 2014, 29, 793–812. [Google Scholar] [CrossRef]
- Dahlgren Lidman, F.; Holmström, E.; Lundmark, T.; Fahlvik, N. Management of spontaneously regenerated mixed stands of birch and Norway spruce in Sweden. Silva Fenn. 2021, 55, 10485. [Google Scholar] [CrossRef]
- Testa, R.; Di Trapani, A.M.; Foderà, M.; Sgroi, F.; Tudisca, S. Economic evaluation of introduction of poplar as biomass crop in Italy. Renew. Sustain. Energy Rev. 2014, 38, 775–780. [Google Scholar] [CrossRef]
- Pra, A.; Brotto, L.; Mori, P.; Lattes, E.B.; Masiero, M.; Andrighetto, N.; Pettenella, D. Profitability of timber plantations on agricultural land in the Po valley (northern Italy): A comparison between walnut, hybrid poplar and polycyclic plantations in the light of the European Union Rural Development Policy orientation. Eur. J. For. Res. 2019, 138, 473–494. [Google Scholar] [CrossRef]
- Feil, J.-H.; Musshoff, O. Modelling investments in short rotation coppice under uncertainty: A value chain perspective. Biomass Bioenergy 2018, 108, 224–235. [Google Scholar] [CrossRef]
- El Kasmioui, O.; Ceulemans, R. Financial Analysis of the Cultivation of Short Rotation Woody Crops for Bioenergy in Belgium: Barriers and Opportunities. BioEnergy Res. 2012, 6, 336–350. [Google Scholar] [CrossRef]
- Jylhä, P.; Hytönen, J.; Ahtikoski, A. Profitability of short-rotation biomass production on downy birch stands on cut-away peatlands in northern Finland. Biomass Bioenergy 2015, 75, 272–281. [Google Scholar] [CrossRef]
- Kristöfel, C.; Strasser, C.; Morawetz, U.B.; Schmidt, J.; Schmid, E. Analysis of woody biomass commodity price volatility in Austria. Biomass Bioenergy 2014, 65, 112–124. [Google Scholar] [CrossRef]
- Di Fulvio, F.; Kroon, A.; Bergström, D.; Nordfjell, T. Comparison of energy-wood and pulpwood thinning systems in young birch stands. Scand. J. For. Res. 2011, 26, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Rytter, L.; Stener, L.-G. Clonal variation in nutrient content in woody biomass of hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Silva Fenn. 2003, 37, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Kiviste, A.; Alvarez Gonzales, J.G.; Rojo Alboreca, A.; Ruiz Gonzales, A.D. Funciones de Crecimiento de Aplocacion en el Ambito Forestall; Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria Ministerio de Ciencia y Tecno: Madrid, Spain, 2002; 195p. [Google Scholar]
- Forest Management Guidelines. Keskkonnaministri määrus nr 2. 2018, Accepted on 16.01.2009. Last reduction on 03.09.2018. Available online: https://www.riigiteataja.ee/akt/131082018008?leiaKehtiv (accessed on 6 September 2021).
- Padari, A.; Metslaid, S.; Kangur, A.; Sims, A.; Kiviste, A. Modelling stand mean height in young naturally regenerated stands—A case study in Järvselja in Estonia. Balt. For. 2009, 15, 226–236. [Google Scholar]
- Ozolinš, R. Forest Taxation Standards in Soviet Latvia. (Hoрмативы для таксаций леса Латвийскoй CCP); Silava: Riga, Latvia, 1988; 176p. (In Russian) [Google Scholar]
- Ozolinš, R. Forest stand assortment structure analysis using mathematical modelling. For. Stud. 2002, 37, 33–42. [Google Scholar]
- Padari, A. Mathematical analysis and modification possibilities of Ozolinš’ taper curve on the example of Hiiumaa pines. For. Stud. 2020, 64, 34–35. [Google Scholar] [CrossRef]
- Straka, T.; Bullard, S.H. Land expectation value calculated in timberland valuation. Apprais. J. 1996, 64, 399–405. [Google Scholar]
- Hauk, S.; Knoke, T.; Wittkopf, S. Economic evaluation of short rotation coppice systems for energy from biomass—A review. Renew. Sustain. Energy Rev. 2014, 29, 435–448. [Google Scholar] [CrossRef]
- Buchholz, T.; Volk, T.A. Profitability of Willow Biomass Crops Affected by Incentive Programs. BioEnergy 2012, 6, 53–64. [Google Scholar] [CrossRef]
- Schiberna, E.; Borovics, A.; Benke, A. Economic Modelling of Poplar Short Rotation Coppice Plantations in Hungary. Forests 2021, 12, 623. [Google Scholar] [CrossRef]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and economic evaluation of a poplar plantation for woodchips production in Italy. Biomass Bioenergy 2014, 60, 164–170. [Google Scholar] [CrossRef] [Green Version]
Age (year) | Stand Basal Area (m2/ha) | Stand Basal Area Increment (m2 ha−1 year−1) | Average Height (m) | Average Height Increment (m year−1) |
---|---|---|---|---|
5 | 0.90 | 0.70 | 3.7 | 0.8 |
6 | 1.61 | 1.43 | 4.5 | 1.4 |
7 | 3.04 | 2.32 | 5.9 | 2.2 |
8 | 5.36 | 2.08 | 8.1 | 1.4 |
9 | 7.44 | 2.02 | 9.5 | 1.8 |
10 | 9.46 | 1.85 | 11.3 | 2.0 |
11 | 11.31 | 2.37 | 13.3 | 1.3 |
12 | 13.68 | 2.36 | 14.6 | 1.0 |
13 | 16.04 | 0.79 | 15.6 | 1.3 |
14 | 16.83 | 2.28 | 16.9 | 1.9 |
15 | 19.11 | 2.02 | 18.8 | 1.2 |
16 | 21.13 | 2.37 | 20.0 | 1.3 |
17 | 23.50 | 1.28 | 21.3 | 0.2 |
18 | 24.77 | 21.5 |
Growth characteristic | Equation No. | Parameter | Parameter Estimate |
---|---|---|---|
ZG | 3 & 5 | a0 | −0.1402 |
a1 | 0.9836 | ||
a2 | −0.2571 | ||
a3 | 0 | ||
R2 | 0.459 | ||
p-value | 0.046 | ||
ZH | 4 & 6 | a0 | −1.5369 |
a1 | 0 | ||
a2 | 1.3982 | ||
a3 | −0.4245 | ||
R2 | 0.462 | ||
p-value | 0.045 |
Treatments/Operations and Items | Cost | |
---|---|---|
Energy wood coppicing with 5-year cycles (method 1) | ||
Energy wood harvest | 15.70 | EUR m−3 |
Chopping | 7.10 | EUR m−3 |
Transportation of chopped wood | 8.40 | EUR m−3 |
Establishment of the early (precommercial) thinning treatments (methods 2–4) | ||
Operator’s gross salary | 12.10 | EUR h−1 |
Holiday pay reserve | 8.00 | % |
Employer’s taxes | 33.80 | % |
Establishment of the corridor treatment after the 2nd year (method 2) | ||
Working time | 30.80 | h ha−1 |
Total cost for the operator’s employer | 528.46 | EUR ha−1 |
Fuel and depreciation of the equipment | 70.00 | EUR ha−1 |
Total cost | 598.46 | EUR ha−1 |
Establishment of the crosscorridor treatment after the 2nd year (method 3) | ||
Working time | 45.80 | h ha−1 |
Total cost for the operator’s employer | 785.83 | EUR ha−1 |
Fuel and depreciation of the equipment | 100.00 | EUR ha−1 |
Total cost | 885.83 | EUR ha−1 |
Establishment of the single-tree treatment after the 2nd year (method 4) | ||
Working time | 56.30 | hours ha−1 |
Total cost for the operator’s employer | 965.98 | EUR ha−1 |
Fuel and depreciation of the equipment | 130.00 | EUR ha−1 |
Total cost | 1095.98 | EUR ha−1 |
Commercial thinning and clearcutting at the age of 25-years (methods 2–4) | ||
Thinning | 21.60 | EUR m−3 |
Clearcutting | 12.00 | EUR m−3 |
Assortment/Price | 1st Quartile | 2nd Quartile | 3rd Quartile | Minimum | Maximum |
---|---|---|---|---|---|
Aspen logs | 32.02 | 33.42 | 38.91 | 29.29 | 46.07 |
Aspen pulpwood | 18.15 | 19.59 | 22.04 | 14.14 | 29.95 |
Fuelwood | 19.46 | 20.00 | 21.97 | 16.44 | 25.54 |
Energy wood | 23.27 | 24.84 | 28.67 | 17.94 | 31.56 |
1% discount rate | |||||
Forest thinning/price | 1st quartile | 2nd quartile | 3rd quartile | Minimum | Maximum |
1. Energy wood coppicing | 181 | 789 | 2270 | −1880 | 3388 |
2. Corridor thinning | 2192 | 2674 | 3872 | 807 | 5793 |
3. Cross-corridor thinning | 2032 | 2490 | 3643 | 760 | 5605 |
4. Single-tree thinning | 2425 | 2832 | 3947 | 1389 | 5937 |
5% discount rate | |||||
Forest thinning/price | 1st quartile | 2nd quartile | 3rd quartile | Minimum | Maximum |
1. Energy wood coppicing | 107 | 466 | 1341 | −1111 | 2002 |
2. Corridor thinning | 670 | 916 | 1516 | −60 | 2413 |
3. Cross-corridor thinning | 481 | 704 | 1257 | −160 | 2150 |
4. Single-tree thinning | 370 | 548 | 1019 | −91 | 1884 |
10% discount rate | |||||
Forest thinning/price | 1st quartile | 2nd quartile | 3rd quartile | Minimum | Maximum |
1. Energy wood coppicing | 62 | 272 | 782 | −647 | 1167 |
2. Corridor thinning | 16 | 137 | 428 | −357 | 820 |
3. Cross-corridor thinning | −164 | −60 | 192 | −474 | 566 |
4. Single-tree thinning | −415 | −343 | −163 | −606 | 184 |
20% discount rate | |||||
Forest thinning/price | 1st quartile | 2nd quartile | 3rd quartile | Minimum | Maximum |
1. Energy wood coppicing | 28 | 122 | 350 | −289 | 522 |
2. Corridor thinning | −238 | −197 | −100 | −371 | 8 |
3. Cross-corridor thinning | −382 | −351 | −276 | −483 | −182 |
4. Single-tree thinning | −590 | −572 | −533 | −638 | −451 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hepner, H.; Lukason, O.; Lutter, R.; Padari, A.; Tullus, A.; Tullus, H. The Value of Hybrid Aspen Coppice Investment under Different Discount Rate, Price and Management Scenarios: A Case Study of Estonia. Forests 2021, 12, 1332. https://doi.org/10.3390/f12101332
Hepner H, Lukason O, Lutter R, Padari A, Tullus A, Tullus H. The Value of Hybrid Aspen Coppice Investment under Different Discount Rate, Price and Management Scenarios: A Case Study of Estonia. Forests. 2021; 12(10):1332. https://doi.org/10.3390/f12101332
Chicago/Turabian StyleHepner, Heiki, Oliver Lukason, Reimo Lutter, Allar Padari, Arvo Tullus, and Hardi Tullus. 2021. "The Value of Hybrid Aspen Coppice Investment under Different Discount Rate, Price and Management Scenarios: A Case Study of Estonia" Forests 12, no. 10: 1332. https://doi.org/10.3390/f12101332
APA StyleHepner, H., Lukason, O., Lutter, R., Padari, A., Tullus, A., & Tullus, H. (2021). The Value of Hybrid Aspen Coppice Investment under Different Discount Rate, Price and Management Scenarios: A Case Study of Estonia. Forests, 12(10), 1332. https://doi.org/10.3390/f12101332