Principal Factors Influencing Tree Growth in Low-Lying Mid Atlantic Coastal Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Species
2.2. Water Level Data
2.3. Field, Laboratory, and Analysis Protocols
3. Results
3.1. Water Levels
3.2. Tree Ring Analysis
3.3. Factors Influencing Tree Growth in Low-Lying Forests
3.4. Variation in the Effects of Coastal Flooding along an Elevation Gradient
4. Discussion
4.1. Factors Influencing Tree Growth in Low-Lying Forests
4.2. Variation in the Effects of Coastal Flooding along an Elevation Gradient
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callahan, J.A.; Horton, B.P.H.; Nikitina, D.L.; Sommerfield, C.K.; McKenna, T.E.; Swallow, D. Recommendation of Sea-Level Rise Planning Scenarios for Delaware: Technical Report, Prepared for Delaware Department of Natural Resources and Environmental Control (DNREC) Delaware Coastal Programs; Delaware Geological Survey: Newark, DE, USA, 2017.
- Kopp, R.E.; Andrews, C.J.; Broccoli, A.; Garner, A.; Kreeger, D.; Leichenko, R.; Lin, N.; Little, C.M.; Miller, J.A.; Miller, J.K.; et al. New Jersey’s Rising Seas and Changing Coastal Storms: Report of the 2019 Science and Technical Advisory Panel November 2019; Rutgers University: New Brunswick, NJ, USA, 2019. [Google Scholar]
- Haaf, L.; Watson, E.B.; Elsey-Quirk, T.; Raper, K.; Padeletti, A.; Maxwell-Doyle, M.; Kreeger, D.; Velinsky, D.J. Sediment Accumulation, Elevation Change, and the Vulnerability of Tidal Marshes in the Delaware Estuary and Barnegat Bay to Accelerated Sea Level Rise. Estuaries Coasts 2021. [Google Scholar] [CrossRef]
- Williams, K.; Macdonald, M.; da Silveira Lobo Sternberg, L. Interactions of storm, drought, and sea-level rise on coastal forest: A case study. J. Coast. Res. 2003, 19, 1116–1121. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Kirwan, J.L.; Copenheaver, C.A. Dynamics of an Estuarine Forest and its Response to Rising Sea Level. J. Coast. Res. 2007, 232, 457–463. [Google Scholar] [CrossRef]
- Smith, J.A.M. The Role of Phragmites australis in Mediating Inland Salt Marsh Migration in a Mid-Atlantic Estuary. PLoS ONE 2013, 8, e65091. [Google Scholar] [CrossRef] [Green Version]
- Schieder, N.W.; Walters, D.C.; Kirwan, M.L. Massive Upland to Wetland Conversion Compensated for Historical Marsh Loss in Chesapeake Bay, USA. Estuaries Coasts 2018, 41, 940–951. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Gedan, K.B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Chang. 2019, 9, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Taillie, P.J.; Moorman, C.E.; Poulter, B.; Ardon, M.; Emanuel, R. Decadal-Scale Vegetation Change Driven by Salinity at Leading Edge of Rising Sea Level. Ecosystems 2019, 22, 1918–1930. [Google Scholar] [CrossRef]
- Smart, L.S.; Taillie, P.J.; Poulter, B.; Vukomanovic, J.; Singh, K.K.; Swenson, J.J.; Mitasova, H.; Smith, J.W.; Meentemeyer, R.K. Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environ. Res. Lett. 2020, 15, 104028. [Google Scholar] [CrossRef]
- Tully, K.; Gedan, K.; Epanchin-Niell, R.; Strong, A.; Bernhardt, E.S.; Bendor, T.; Mitchell, M.; Kominoski, J.E.; Jordan, T.; Neubauer, S.C.; et al. The invisible flood: The chemistry, ecology, and social implications of coastal saltwater intrusion. Bioscience. BioScience 2019, 69, 368–378. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Response of woody plant to flooding and salinity. Tree Physiol. 1997, 17, 490. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Anisfeld, S.C.; Blum, L.K.; Long, E.V.; Feagin, R.A.; Fernandes, A.; Kearney, W.S.; Williams, K. Sea level rise and the dynamics of the marsh-upland boundary. Front. Environ. Sci. 2019, 7, 25. [Google Scholar] [CrossRef]
- Kearney, W.S.; Fernandes, A.; Fagherazzi, S. Sea-level rise and storm surges structure coastal forests into persistence and regeneration niches. PLoS ONE 2019, 14, e0215977. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.S. Coastal Forest Tree Populations in a Changing Environment, Southeastern Long Island, New York. Ecol. Monogr. 1986, 56, 259–277. [Google Scholar] [CrossRef]
- Brinson, M.M.; Christian, R.R.; Blum, L.K. Multiple States in the Sea-Level Induced Transition from Terrestrial Forest to Estuary. Estuaries 1995, 18, 648–659. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Murray, A.B. A coupled geomorphic and ecological model of tidal marsh evolution. Proc. Natl. Acad. Sci. USA 2007, 104, 6118–6122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robichaud, A.; Begin, Y. The effects of storms and sea-level rise on a coastal forest margin in New Brunswick, eastern Canada. J. Coast. Res. 1997, 13, 429–439. [Google Scholar]
- Kumar, L.; Gopalakrishnan, T.; Jayasinghe, S. Impacts of Climate Change on Coastal Forests in the Northeast US; Rutgers University: New Brunswick, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Field, C.R.; Gjerdrum, C.; Elphick, C.S. Forest resistance to sea-level rise prevents landward migration of tidal marsh. Biol. Conserv. 2016, 201, 363–369. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, L.; Bhotika, S.; Williams, K.; Putz, F.E. Sea-level rise and drought interactions accelerate forest decline on the Gulf Coast of Florida, USA. Glob. Chang. Biol. 2007, 13, 2349–2360. [Google Scholar] [CrossRef]
- Fernandes, A.; Rollinson, C.R.; Kearney, W.S.; Dietze, M.; Fagherazzi, S. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor’easters. J. Geophys. Res. Biogeosci. 2018, 123, 832–849. [Google Scholar] [CrossRef]
- Tucker, C.S.; Trepanier, J.C.; Harley, G.; Delong, K.L. Recording Tropical Cyclone Activity from 1909 to 2014 along the Northern Gulf of Mexico using Maritime Slash Pine Trees (Pinus elliottii var. elliottii Engelm.). J. Coast. Res. 2018, 342, 328–340. [Google Scholar] [CrossRef]
- Cook, E.R. The Decomposition of Tree-Ring Series for Environmental Studies. Tree-Ring Bull 1987, 47, 37–59. [Google Scholar]
- Fritts, H.; Swetnam, T. Dendroecology: A Tool for Evaluating Variations in Past and Present Forest Environments. Adv. Ecol. Res. 1989, 19, 111–188. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree-Ring Analysis: A Tool for Water Resources Research. Eos Trans. Am. Geophys. Union 1969, 50, 22–29. [Google Scholar] [CrossRef]
- Lathrop, R.; Auermuller, L. New Jersey Flood Mapper. NJAdapt. 2017. Available online: https://www.njfloodmapper.org/ (accessed on 7 January 2020).
- DNREC. Delaware Flood Planning Tool. Available online: https://floodplanning.dnrec.delaware.gov/ (accessed on 7 January 2021).
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- Burns, R.M.; Honkala, B.H. Volume 1: Conifers. Silvics North America, United States Forestry Service; United States Department of Agriculture: Washington, DC, USA, 1990. [CrossRef]
- Burns, R.M.; Honkala, B.H. Volume 2: Hardwoods. Silvics North America, United States Forestry Service; United States Department of Agriculture: Washington, DC, USA, 1990; Volume 2, pp. 148–152.
- NOAA. NOAA Tides & Currents. 2020. Available online: https://tidesandcurrents.noaa.gov/map/index.html?region=NewJersey (accessed on 20 September 2021).
- Hyndman, R.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.D.; Anisfeld, S.C. VulnToolkit: Analysis of Tidal Datasets. 2021. Available online: https://CRAN.R-project.org/package=VulnToolkit (accessed on 20 September 2021). [CrossRef]
- Kucheryavskiy, S. mdatools—R package for chemometrics. Chemom. Intell. Lab. Syst. 2020, 198, 103937. [Google Scholar] [CrossRef]
- Gouhier, T.C.; Guichard, F. Synchrony: Quantifying variability in space and time. Methods Ecol. Evol. 2014, 5, 524–533. [Google Scholar] [CrossRef]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Bunn, A.; Korpela, M.; Biondi, F.; Campelo, F.; Mérian, P.; Qeadan, F.; Zang, C. dplR: Dendrochronology Program Library in R. R Package Version 1.7.2. 2021. Available online: https://CRAN.R-project.org/package=dplR (accessed on 20 September 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.r-project.org/ (accessed on 20 September 2021).
- Zang, C.; Biondi, F. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2014, 38, 431–436. [Google Scholar] [CrossRef]
- Meko, D.; Touchan, R.; Anchukaitis, K. Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series. Comput. Geosci. 2011, 37, 1234–1241. [Google Scholar] [CrossRef]
- Danielson, J.J.; Poppenga, S.K.; Brock, J.C.; Evans, G.A.; Tyler, D.J.; Gesch, D.B.; Thatcher, C.A.; Barras, J.A. Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database. J. Coast. Res. 2016, 76, 75–89. [Google Scholar] [CrossRef]
- Danielson, J.J.; Poppenga, S.K.; Tyler, D.J.; Palaseanu-Lovejoy, M.; Gesch, D.B. Coastal National Elevation Database: U.S. Geological Survey Fact Sheet 2018–3037; United States Geological Survey: Liston, VA, USA, 2018. [CrossRef]
- Reutebuch, S.E.; Andersen, H.E.; McGaughey, R.J.; Carson, W.W. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can. J. Remote Sens. 2005, 31, 283–288. [Google Scholar] [CrossRef]
- Alday, J.G.; Shestakova, T.A.; de Dios, V.R.; Voltas, J. DendroSync: An R package to unravel synchrony patterns in tree-ring networks. Dendrochronologia 2018, 47, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Martin-Benito, D.; Beeckman, H.; Cañellas, I. Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. Eur. J. For. Res. 2012, 132, 33–45. [Google Scholar] [CrossRef]
- Ballesteros-Cánovas, J.A.; Stoffel, M.; George, S.S.; Hirschboeck, K. A review of flood records from tree rings. Prog. Phys. Geogr. Earth Environ. 2015, 39, 794–816. [Google Scholar] [CrossRef]
- Venturas, M.D.; Sperry, J.S.; Hacke, U. Plant xylem hydraulics: What we understand, current research, and future challenges. J. Integr. Plant Biol. 2017, 59, 356–389. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, P.R.; Comrie, A.C.; Packin, G.D.; Angersbach, K.; Hughes, M.K. The climate of the US Southwest. Clim. Res. 2002, 21, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, P.R. Dendroclimatology: Extracting climate from trees. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 343–352. [Google Scholar] [CrossRef]
- Leland, C.; Hom, J.; Skowronski, N.; Ledig, F.T.; Krusic, P.J.; Cook, E.R. Missing rings, synchronous growth, and ecological disturbance in a 36-year pitch pine (Pinus rigida) provenance study. PLoS ONE 2016, 11, e0154730. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.; Maxwell, S.; Harley, G.; Oliver, J.S.; Speer, J.H.; Collins, S.; Downe, M.; Gannon, B.; Ma, L.; Raso, C.; et al. Climate—Growth Relationships of Pinus rigida (Mill.) at the Species’ Northern Range Limit, Acadia National Park, ME. Northeast. Nat. 2016, 23, 490–500. [Google Scholar] [CrossRef]
- Copenheaver, C.A.; Grinter, L.E.; Lorber, J.H.; Matthew, A. A Dendroecological and Dendroclimatic Analysis of Pinus virginiana and Pinus rigida at Two Slope Positions in the Virginia Piedmont Neatrour and Michael P. Spinney Published by: Southern Appalachian Botanical Society Stable. Castanea 2002, 67, 302–315. Available online: https://www.jstor.org/s (accessed on 20 September 2021).
- Pederson, N.; Cook, E.R.; Jacoby, G.C.; Peteet, D.M.; Griffin, K.L. The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 2004, 22, 7–29. [Google Scholar] [CrossRef]
- Carr, J.; Guntenspergen, G.; Kirwan, M. Modeling Marsh-Forest Boundary Transgression in Response to Storms and Sea-Level Rise. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Woods, N.N.; Swall, J.L.; Zinnert, J.C. Soil Salinity Impacts Future Community Composition of Coastal Forests. Wetlands 2020, 40, 1495–1503. [Google Scholar] [CrossRef]
- Williams, K.; Ewel, K.C.; Stumpf, R.P.; Putz, F.E.; Thomas, W.; Workman, T.W. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 1999, 80, 2045–2063. [Google Scholar] [CrossRef]
- Knott, J.F.; Elshaer, M.; Daniel, J.S.; Jacobs, J.M.; Kirshen, P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2017, 2639, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.M.; Knott, J.F.; Daniel, J.S.; Kirshen, P. Modeling Groundwater Rise Caused by Sea-Level Rise in Coastal New Hampshire. J. Coast. Res. 2019, 35, 143–158. [Google Scholar] [CrossRef]
Site | Climate Division | Coordinates (Latitude, Longitude) | Season | Mean Temperature (°C) | Mean Precipitation (mm) | Mean Drought Index (SPEI) |
---|---|---|---|---|---|---|
JL | New Jersey Southern | 39.39, −75.29 | Spring | 16.3 (4.4) | 280 (42) | 0.0257 (0.78) |
Summer | 22.7 (2.1) | 317 (49) | 0.0702 (0.78) | |||
Autumn | 8.83 (4.6) | 284 (47) | 0.142 (0.94) | |||
Winter | 3.00 (2.9) | 281 (42) | 0.253 (0.77) | |||
SJ | Delaware Southern | 39.08, −75.44 | Spring | 17.3 (4.4) | 297 (45) | −0.0241 (0.87) |
Summer | 23.0 (2.3) | 324 (49) | 0.112 (0.92) | |||
Autumn | 8.68 (4.7) | 267 (46) | 0.160 (0.95) | |||
Winter | 3.26 (3.3) | 265 (42) | 0.0594 (0.78) | |||
CI | New Jersey Coastal | 40.02, −74.07 | Spring | 16.0 (4.5) | 303 (44) | 0.149 (0.75) |
Summer | 22.3 (2.3) | 332 (52) | 0.00515 (0.82) | |||
Autumn | 8.03 (4.6) | 291 (50) | 0.189 (0.95) | |||
Winter | 2.28 (3.1) | 286 (46) | 0.313 (0.74) | |||
LC | New Jersey Coastal | 39.78, −74.11 | Spring | 16.0 (4.5) | 303 (44) | −0.0665 (0.82) |
Summer | 22.3 (2.3) | 332 (52) | 0.0170 (0.79) | |||
Autumn | 8.03 (4.6) | 291 (50) | 0.218 (0.79) | |||
Winter | 2.28 (3.1) | 286 (46) | 0.299 (0.84) |
Site | Species | n | Mean DBH (cm ± sd) | Mean Chronology Length (Years ± sd) | Interseries Correlation | Sensitivity |
---|---|---|---|---|---|---|
JL | Pinus taeda | 51 | 55 ± 15 | 58 ± 16 | 0.571 | 0.294 |
SJ | Ilex opaca | 60 | 22 ± 5 | 70 ± 21 | 0.504 | 0.532 |
CI | Pinus rigida | 51 | 44 ± 8 | 90 ± 40 | 0.522 | 0.362 |
LC | Ilex opaca | 51 | 29 ± 5 | 112 ± 25 | 0.512 | 0.384 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haaf, L.; Dymond, S.F.; Kreeger, D.A. Principal Factors Influencing Tree Growth in Low-Lying Mid Atlantic Coastal Forests. Forests 2021, 12, 1351. https://doi.org/10.3390/f12101351
Haaf L, Dymond SF, Kreeger DA. Principal Factors Influencing Tree Growth in Low-Lying Mid Atlantic Coastal Forests. Forests. 2021; 12(10):1351. https://doi.org/10.3390/f12101351
Chicago/Turabian StyleHaaf, LeeAnn, Salli F. Dymond, and Danielle A. Kreeger. 2021. "Principal Factors Influencing Tree Growth in Low-Lying Mid Atlantic Coastal Forests" Forests 12, no. 10: 1351. https://doi.org/10.3390/f12101351
APA StyleHaaf, L., Dymond, S. F., & Kreeger, D. A. (2021). Principal Factors Influencing Tree Growth in Low-Lying Mid Atlantic Coastal Forests. Forests, 12(10), 1351. https://doi.org/10.3390/f12101351