Microbial Diversity and Ecosystem Functioning in Deadwood of Black Pine of a Temperate Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Deadwood Sampling
2.2. GHG Potential Production from Deadwood
2.3. Physical and Chemical Properties
2.4. DNA Extraction and DGGE Analysis
2.5. Real-Time PCR
2.6. Statistical Analyses
3. Results
3.1. Chemical Characterisation of Deadwood Samples
3.2. GHG Potential Production from Deadwood
3.3. Structural Diversity of Deadwood Microbial Communities
3.4. Quantification of Deadwood Microbial Communities
3.5. Correlation Analysis
4. Discussion
4.1. Chemical Features of Deadwood Decay
4.2. Microbial Features of Deadwood Decay
4.3. GHG Emissions and Microbial Functional Groups
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humphrey, J.W.; Sippola, A.L.; Lempérière, G.; Dodelin, B.; Alexander, K.N.A.; Butler, J.E. Deadwood as an indicator of biodiversity in European forests: From theory to operational guidance. In Monitoring and Indicators of Forest Biodiversity in Europe—From Ideas to Operationality; Marchetti, M., Ed.; EFI Proceedings: Joensuu, Finland, 2004; Volume 51, pp. 193–206. [Google Scholar]
- Müller, J.; Bütler, R. A Review of habitat thresholds for dead wood: A baseline for management recommendations in European forests. Eur. J. For. Res. 2010, 129, 981–992. [Google Scholar] [CrossRef]
- Błońska, E.; Kacprzyk, M.; Spolnik, A. Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage. Eco. Res. 2017, 32, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Vallauri, D.; André, J.; Blondel, J. Deadwood—A typical shortcoming of Managed forests. Rev. For. Française 2003, 2, 99–112. (In French) [Google Scholar]
- Herrero, C.; Monleon, V.J.; Gómez, N.; Bravo, F. Distribution of dead wood volume and mass in mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory. For. Syst. 2016, 25, e069. [Google Scholar] [CrossRef] [Green Version]
- Ulyshen, M.D.; Hanula, J.L. Patterns of saproxylic beetle succession in loblolly pine. Agric. For. Entomol. 2010, 12, 187–194. [Google Scholar] [CrossRef]
- Hammond, H.J.; Langor, D.W.; Spence, J.R. Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: Spatiotemporal variation and conservation of assemblages. Can. J. For. Res. 2004, 34, 1–19. [Google Scholar] [CrossRef]
- Næsset, E. Relationship between relative wood density of Picea abies logs and simple classification systems of decayed coarse woody debris. Can. J. For. Res. 1999, 14, 454–461. [Google Scholar] [CrossRef]
- Paletto, A.; Tosi, V. Deadwood density variation with decay class in seven tree species of the Italian Alps. Scand. J. For. Res. 2010, 25, 164–173. [Google Scholar] [CrossRef]
- IPCC. Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. In Institute for Global Environmental Strategies (IGES); Eggelston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Hayama, Japan, 2006. [Google Scholar]
- Kahl, T.; Baber, K.; Otto, P.; Wirth, C.; Bauhus, J. Drivers of CO2 emission rates from dead wood logs of 13 tree species in the initial decomposition phase. Forests 2015, 6, 2484–2504. [Google Scholar] [CrossRef] [Green Version]
- Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.C.; Hefting, M.M.; Kalbitz, K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils. For. Ecol. Manag. 2016, 377, 1–15. [Google Scholar] [CrossRef]
- Thomas, J. Dead wood: From forester’s bane to environmental boon. In Proceedings of the Symposium on Ecology and Management of Deadwood in Western Forests; Laudenslayer, W.F.J., Shea, P.J., Valentine, B.E., Weatherspoon, C.P., Lisle, T.E., Eds.; Forest Service General Technical Report PSW-GTR-181. U.S. Forest Service: Reno, NV, USA, 2002; pp. 3–9. [Google Scholar]
- Marage, D.; Lemperiere, G. The Management of snags: A comparison in Managed and unmanaged ancient forests of the Southern french Alps. Ann. For. Sci. 2005, 62, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Pelyukh, O.; Paletto, A.; Zahvoyska, L. People’s attitudes towards deadwood in forest: Evidence from the Ukrainian Carpathians. J. For. Sci. 2019, 65, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Pommerening, A.; Murphy, S.T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 2004, 77, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Dittrich, S.; Jacob, M.; Bade, C.; Leuschner, C.; Hauck, M. The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol. 2014, 215, 1123–1137. [Google Scholar] [CrossRef]
- Lee, M.R.; Oberle, B.; Olivas, W.; Young, D.F.; Zanne, A.E. Wood construction more strongly shapes deadwood microbial communities than spatial location over 5 years of decay. Environ. Microb. 2020, 22, 4702–4717. [Google Scholar] [CrossRef]
- Alfaro, M.; Oguiza, J.A.; Ramírez, L.; Pisabarro, A.G. Comparative analysis of secretomes in basidiomycete fungi. J. Proteomics 2014, 102, 28–43. [Google Scholar] [CrossRef]
- Johnston, S.R.; Boddy, L.; Weightman, A.J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. Ecol. 2016, 92, fiw179. [Google Scholar] [CrossRef] [Green Version]
- Janusz, G.; Pawlik, A.; Sulej, J.; Świderska-Burek, U.; Jarosz-Wilkołazka, A.; Paszczyński, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef] [Green Version]
- Bani, A.; Pioli, S.; Ventura, M.; Panzacchi, P.; Borruso, L.; Tognetti, R.; Tonon, G.; Brusetti, L. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 2018, 126, 75–84. [Google Scholar] [CrossRef]
- Wilhelm, R.C.; Singh, R.; Eltis, L.D.; Mohn, W.W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019, 13, 413–429. [Google Scholar] [CrossRef] [Green Version]
- Díaz-García, L.; Bugg, T.D.; Jiménez, D.J. Exploring the lignin catabolism potential of soil-derived lignocellulolytic microbial consortia by a gene-centric metagenomic approach. Microb. Ecol. 2020, 80, 885–896. [Google Scholar] [CrossRef]
- Ho, A.; Angel, R.; Veraart, A.J.; Daebeler, A.; Jia, Z.; Kim, S.Y.; Kerckhof, F.M.; Boon, N.; Bodelier, P.L. Biotic interactions in microbial communities as modulators of biogeochemical processes: Methanotrophy as a model system. Front. Microbiol. 2016, 7, 1285. [Google Scholar] [CrossRef] [Green Version]
- De Boer, W.; Van der Wal, A. Interactions between saprotrophic basidiomycetes and bacteria. In Ecology of Saprotrophic Basidiomycetes; Boddy, L., Frankland, J.C., van West, P., Eds.; Academic Press: Amsterdam, The Netherlands, 2008; pp. 143–153. [Google Scholar]
- Clausen, C.A. Bacterial associations with decaying wood: A Review. Int. Biodeterior. Biodegrad. 1996, 37, 1–2. [Google Scholar] [CrossRef]
- Rinne, K.T.; Rajala, T.; Peltoniemi, K.; Chen, J.; Smolander, A.; Mäkipää, R. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Funct. Ecol. 2017, 31, 530–541. [Google Scholar] [CrossRef]
- Tláskal, V.; Brabcová, V.; Větrovský, T.; Jomura, M.; López-Mondéjar, R.; Monteiro, L.M.O.; Saraiva, J.P.; Human, Z.R.; Cajthaml, T.; da Rocha, U.N.; et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 2021, 6, e01078–20. [Google Scholar] [CrossRef] [PubMed]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 2017, 81, e00063–16. [Google Scholar]
- Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Dahllöf, I. Molecular community analysis of microbial diversity. Curr. Opin. Biotechnol. 2002, 13, 213–217. [Google Scholar] [CrossRef]
- Pastorelli, R.; Agnelli, A.E.; De Meo, I.; Graziani, A.; Paletto, A.; Lagomarsino, A. Analysis of microbial diversity and greenhouse gas production of decaying pine logs. Forests 2017, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Pastorelli, R.; Paletto, A.; Agnelli, A.E.; Lagomarsino, A.; De Meo, I. Microbial communities associated with decomposing deadwood of downy birch in a natural forest in Khibiny Mountains (Kola Peninsula, Russian Federation). For. Ecol. Manag. 2020, 455, 117643. [Google Scholar] [CrossRef]
- Pastorelli, R.; Costagli, V.; Forte, C.; Viti, C.; Rompato, B.; Nannini, G.; Certini, G. Litter decomposition: Little evidence of the “home-field advantage” in a mountain forest in Italy. Soil Biol. Biochem. 2021, 159, 108300. [Google Scholar] [CrossRef]
- Lagomarsino, A.; Mazza, G.; Agnelli, A.E.; Lorenzetti, R.; Bartoli, C.; Viti, C.; Colombo, C.; Pastorelli, R. Litter fractions and dynamics in a degraded pine forest after thinning treatments. Eur. J. For. Res. 2020, 139, 295–310. [Google Scholar] [CrossRef]
- Lagomarsino, A.; De Meo, I.; Agnelli, A.E.; Paletto, A.; Mazza, G.; Bianchetto, E.; Pastorelli, R. Decomposition of black pine (Pinus nigra JF Arnold) deadwood and its impact on forest soil components. Sci. Total Environ. 2021, 754, 142039. [Google Scholar] [CrossRef]
- Petersen, D.G.; Blazewicz, S.J.; Firestone, M.; Herman, D.J.; Turetsky, M.; Waldrop, M. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol. 2012, 14, 993–1008. [Google Scholar] [CrossRef]
- Rocca, J.D.; Lennon, J.T.; Evans, S.E. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J. 2014, 9, 1693–1699. [Google Scholar] [CrossRef] [Green Version]
- Lammel, D.R.; Feigl, B.J.; Cerri, C.C.; Nüsslein, K. Specific microbial gene abundances and soil parameters contribute to C.N. and greenhouse gas process rates after land use change in Southern Amazonian soils. Front. Microb. 2015, 6, 1057. [Google Scholar] [CrossRef] [Green Version]
- Giuntini, F.; De Meo, I.; Graziani, A.; Cantiani, P.; Paletto, A. Stima del volume di legno morto in rimboschimenti di pino nero (Pinus nigra JF Arnold) in Toscana: Confronto tra casi studio. Dendronatura 2017, 1, 19–28. (In Italian) [Google Scholar]
- Bayraktar, S.; Paletto, A.; Floris, A. Deadwood volume and quality in recreational forests: The case study of the Belgrade forest (Turkey). For. Syst. 2020, 29, e008. [Google Scholar]
- Paletto, A.; Tosi, V. Forest canopy cover and canopy closure: Comparison of assessment techniques. Eur. J. For. Res. 2009, 128, 265–272. [Google Scholar] [CrossRef]
- Cantiani, P.; De Meo, I.; Becagli, C.; Bianchetto, E.; Cazau, C.; Mocali, S.; Salerni, E. Effects of thinning on plants and fungi biodiversity in a Pinus nigra plantation: A case study in central Italy. For. Ideas 2015, 21, 149–162. [Google Scholar]
- Barbato, D.; Perini, C.; Mocali, S.; Bacaro, G.; Tordoni, E.; Maccherini, S.; Marchi, M.; Cantiani, P.; De Meo, I.; Bianchetto, E.; et al. Teamwork makes the dream work: Disentangling cross-taxon congruence across soil biota in black pine plantations. Sci. Total Environ. 2019, 656, 659–669. [Google Scholar] [CrossRef]
- Rivas-Martínez, S. Global Bioclimatics. (Clasificación Bioclimática de la Tierra). Available online: http://www.globalbioclimatics.org/book/bioc/global_bioclimatics_0.htm (accessed on 27 August 2004).
- Vainio, E.J.; Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 2000, 8, 927–936. [Google Scholar] [CrossRef]
- Nübel, U.; Engelen, B.; Felske, A.; Snairdr, J.; Wieshuber, A.; Amann, R.I.; Ludwig, W.; Backhaus, H. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 1996, 178, 5636–5643. [Google Scholar] [CrossRef] [Green Version]
- Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E.M.H. Analysis of actinomycetes communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microb. 1997, 63, 3233–3241. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, D.; Zhang, Y.; Shen, J.; van der Gast, C.; Hahn, M.W.; Wu, Q. Do patterns of bacterial diversity along salinity gradients differ from those observed for microorganisms? PLoS ONE 2011, 6, e27597. [Google Scholar]
- Pastorelli, R.; Landi, S.; Trabelsi, D.; Piccolo, R.; Mengoni, A.; Bazzicalupo, M.; Pagliai, M. Effects of soil management on structure and activity of denitrifying bacterial communities. Appl. Soil Ecol. 2011, 49, 46–58. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electronica 2001, 4, 9. [Google Scholar]
- Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Meo, I.; Lagomarsino, A.; Agnelli, A.E.; Paletto, A. Direct and indirect assessment of carbon stock in deadwood: Comparison in Calabrian Pine (Pinus brutia Ten. subsp. brutia) forests in Italy. For. Sci. 2019, 65, 460–468. [Google Scholar] [CrossRef]
- Harmon, M.E.; Fasth, B.; Woodall, C.W.; Sexton, J. Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type. For. Ecol. Manag. 2013, 291, 259–267. [Google Scholar] [CrossRef]
- Weedon, J.T.; Cornwell, W.K.; Cornelissen, J.H.; Zanne, A.E.; Wirth, C.; Coomes, D.A. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species? Ecol. Lett. 2009, 12, 45–56. [Google Scholar] [CrossRef]
- Kahl, T.; Arnstadt, T.; Baber, K.; Bässler, C.; Bauhus, J.; Borken, W.; Buscot, F.; Floren, A.; Heibl, C.; Hessenmöller, D.; et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 2017, 391, 86–95. [Google Scholar] [CrossRef]
- Palviainen, M.; Finér, L.; Laiho, R.; Shorohova, E.; Kapitsa, E.; Vanha-Majamaa, I. Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. For. Ecol. Manag. 2010, 259, 390–398. [Google Scholar] [CrossRef]
- Lombardi, F.; Cherubini, P.; Tognetti, R.; Cocozza, C.; Lasserre, B.; Marchetti, M. Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Ann. For. Sci. 2013, 70, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Purahong, W.; Arnstadt, T.; Kahl, T.; Bauhus, J.; Kellner, H.; Hofrichter, M.; Krüger, D.; Buscot, F.; Hoppe, B. Are correlations between deadwood fungal community structure, wood physico-chemical properties and lignin-modifying enzymes stable across different geographical regions? Fungal Ecol. 2016, 22, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, J.H.C.; Sass-Klaassen, U.; Poorter, L.; van Geffen, K.; van Logtestijn, R.S.P.; van Hal, J.; Goudzwaard, L.; Sterck, F.J.; Klaassen, R.K.W.M.; Freschet, G.T.; et al. Controls on coarse wood decay in temperate tree species: Birth of the LOGLIFE Experiment. AMBIO 2012, 1, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Arnstadt, T.; Hoppe, B.; Kahl, T.; Kellner, H.; Krüger, D.; Bässler, C.; Bauhus, J.; Hofrichter, M. Patterns of laccase and peroxidases in coarse woody debris of Fagus sylvatica, Picea abies and Pinus Sylvestris and their relation to different wood parameters. Eur. J. For. Res. 2016, 135, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Salerni, E.; Barbato, D.; Cazau, C.; Gardin, L.; Henson, G.; Leonardi, P.; Tomao, A.; Perini, C. Selective thinning to enhance soil biodiversity in artificial black pine stands-what happens to mushroom fruiting? Ann. For. Res. 2020, 63, 75–90. [Google Scholar]
- Hoppe, B.; Krüger, D.; Kahl, T.; Arnstadt, T.; Buscot, F.; Bauhus, J.; Wubet, T. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci. Rep. 2015, 5, 9456. [Google Scholar]
- Zhang, H.B.; Yang, M.X.; Tu, R. Unexpectedly high bacterial diversity in decaying wood of a conifer as revealed by a molecular method. Int. Biodeterior. Biodegrad. 2008, 62, 471–474. [Google Scholar]
- Větrovský, T.; Steffen, K.T.; Baldrian, P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS ONE 2014, 9, e89108. [Google Scholar] [CrossRef]
- Rinta-Kanto, J.M.; Sinkko, H.; Rajala, T.; Al-Soud, W.A.; Sørensen, S.J.; Tamminen, M.V.; Timonen, S. Natural decay process affects the abundance and community structure of bacteria and archaea in Picea abies logs. FEMS Microbiol. Ecol. 2016, 92, fiw087. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Brandón, M.; Probst, M.; Siles, J.A.; Peintner, U.; Bardelli, T.; Egli, M.; Insam, H.; Ascher-Jenull, J. Fungal communities and their association with nitrogen-fixing bacteria affect early decomposition of Norway spruce deadwood. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2020, 66, 506–577. [Google Scholar] [CrossRef] [Green Version]
- Purahong, W.; Wubet, T.; Krüger, D.; Buscot, F. Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME J. 2018, 12, 289–295. [Google Scholar] [CrossRef]
- Covey, K.R.; de Mesquita, C.B.; Oberle, B.; Maynard, D.S.; Bettigole, C.; Crowther, T.W.; Duguid, M.C.; Steven, B.; Zanne, A.E.; Lapin, M.; et al. Greenhouse trace gases in deadwood. Biogeochemistry 2016, 130, 215–226. [Google Scholar] [CrossRef]
- Carmichael, M.J.; Bernhardt, E.S.; Bräuer, S.L.; Smith, W.K. The role of vegetation in methane flux to the atmosphere: Should vegetation be included as a distinct category in the global methane budget? Biogeochemistry 2014, 119, 1–24. [Google Scholar] [CrossRef]
- Lenhart, K.; Bunge, M.; Ratering, S.; Neu, T.R.; Schüttmann, I.; Greule, M.; Kammann, C.; Schnell, S.; Müller, C.; Zorn, H.; et al. Evidence for methane production by saprotrophic fungi. Nat. Commun. 2012, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeikus, J.G.; Henning, D.L. Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood if living trees. Anton. Leeuw. 1975, 41, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Mukhin, V.A.; Voronin, P.Y. A new source of methane in boreal forests. Appl. Biochem. Microbiol. 2008, 44, 297–299. [Google Scholar] [CrossRef]
- Beckmann, S.; Krueger, M.; Engelen, B.; Gorbushina, A.A.; Cypionka, H. Role of bacteria, archaea and fungi involved in methane release in abandoned coal mines. Geomicrobiol. J. 2011, 28, 347–358. [Google Scholar] [CrossRef]
- Moll, J.; Keller, H.; Leonhardt, S.; Stengel, E.; Dahl, A.; Bässler, C.; Buscot, F.; Hofrichter, M.; Hoppe, B. Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environ. Microbiol. 2018, 20, 3744–3756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, T. Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci. Biotechnol. Biochem. 2009, 73, 2561–2567. [Google Scholar] [CrossRef] [PubMed]
- Hongoh, Y.; Ohkuma, M. Termite gut flagellates and their methanogenic and eubacterial symbionts. In Endosymbiotic Methanogenic Archaea; Hackstein, J.H.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 19, pp. 55–79. [Google Scholar]
- Hirakata, Y.; Hatamoto, M.; Oshiki, M.; Watari, T.; Araki, N.; Yamaguchi, T. Food selectivity of anaerobic protists and direct evidence for methane production using carbon from prey bacteria by endosymbiotic methanogen. ISME J. 2020, 14, 1873–1885. [Google Scholar] [CrossRef]
- Folman, L.B.; Gunnewiek, P.; Boddy, L.; De Boer, W. Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol. Ecol. 2008, 63, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Vorob’ev, A.V.; de Boer, W.; Folman, L.B.; Bodelier, P.L.; Doronina, N.V.; Suzina, N.E.; Trotsenko, Y.A.; Dedysh, S.N. Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int. J. Syst. Evol. Microbiol. 2009, 59, 2538–2545. [Google Scholar] [CrossRef] [Green Version]
- Mäkipää, R.; Leppänen, S.M.; Munoz, S.S.; Smolander, A.; Tiirola, M.; Tuomivirta, T.; Fritze, H. Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs. Soil Biol. Biochem. 2018, 120, 230–232. [Google Scholar] [CrossRef]
- Dedysh, S.N.; Khmelenina, V.N.; Suzina, N.E.; Trotsenko, Y.A.; Semrau, J.D.; Liesack, W.; Tiedje, J.M. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int. J. Syst. Evol. Microbiol. 2002, 52, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Wagg, C.; Schaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019, 10, 1–10. [Google Scholar]
- Žifčáková, L.; Větrovský, T.; Lombard, V.; Henrissat, B.; Howe, A.; Baldrian, P. Feed in summer, rest in winter: Microbial carbon utilization in forest topsoil. Microbiome 2017, 5, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533–616. [Google Scholar] [CrossRef]
- Shaw, L.J.; Nicol, G.W.; Smith, Z.; Fear, J.; Prosser, J.I.; Baggs, E.M. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 2006, 8, 214–222. [Google Scholar] [CrossRef]
Moisture (%) | TN (%) | TC (%) | C/N Ratio | pH | |
---|---|---|---|---|---|
Class 1 | 52.2 (2.5) ab | 0.18 (0.02) c | 48.5 (0.4) b | 281.3 (28.7) a | 4.5 (0.3) |
Class 2 | 41.7 (4.7) b | 0.21 (0.03) bc | 48.3 (0.8) b | 240.0 (32.9) ab | 4.6 (0.3) |
Class 3 | 63.3 (3.0) a | 0.27 (0.03) bc | 48.4 (1.0) b | 184.8 (19.9) bc | 4.0 (0.1) |
Class 4 | 54.6 (3.4) ab | 0.31 (0.01) b | 49.1 (0.5) b | 158.0 (6.3) cd | 4.1 (0.1) |
Class 5 | 51.5 (10.6) ab | 0.55 (0.08) a | 52.2 (1.3) a | 102.7 (18.7) d | 4.0 (0.1) |
Fungi (18S-DGGE) | Bacteria (16S-DGGE) | Actinobacteria (16S-DGGE) | ||||
---|---|---|---|---|---|---|
Richness | Shannon | Richness | Shannon | Richness | Shannon | |
Class 1 | 18.8 (1.3) b | 2.86 (0.07) abc | 15.0 (1.5) c | 2.63 (0.12) c | 11.0 (2.2) ab | 2.29 (0.24) ab |
Class 2 | 15.5 (0.9) b | 2.67 (0.07) c | 24.0 (2.9) b | 3.09 (0.11) b | 13.0 (2.0) a | 2.51 (0.16) a |
Class 3 | 18.5 (1.2) b | 2.84 (0.07) bc | 21.3 (0.8) b | 2.99 (0.03) b | 14.5 (0.6) a | 2.66 (0.05) a |
Class 4 | 22.8 (1.0) a | 3.05 (0.05) a | 26.0 (1.3) ab | 3.17 (0.05) ab | 6.8 (0.5) c | 1.89 (0.07) b |
Class 5 | 22.3 (1.2) a | 3.01 (0.06) ab | 29.8 (0.9) a | 3.34 (0.03) a | 7.5 (0.5) bc | 2.00 (0.06) b |
F | 7.0 | 5.7 | 11.5 | 11.6 | 5.9 | 5.8 |
p | ** | ** | *** | *** | ** | ** |
Microbial Group (Target Gene) | n. Copies gr−1 Deadwood | ||||
---|---|---|---|---|---|
Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | |
Fungi (18S rRNA) | 9.7 × 108 (8.7 × 108) | 7.9 × 107 (2.2 × 107) | 2.9 × 108 (1.7 × 108) | 2.7 × 108 (1.4 × 108) | 3.7 × 108 (2.6 × 108) |
Bacteria (16S rRNA) | 5.4 × 109 (1.6 × 109) b | 5.4 × 108 (1.5 × 108) b | 2.4 × 109 (3.7 × 108) b | 2.6 × 109 (5.5 × 108) b | 3.0 × 1010 (5.9 × 109) a |
Actinobacteria (16S rRNA) | 9.3 × 107 (3.3 × 107) b | 7.8 × 107 (3.3 × 107) b | 1.3 × 108 (3.6 × 107) b | 2.0 × 108 (4.8 × 107) b | 3.9 × 109 (6.7 × 108) a |
Methanogens (16S rRNA) | 1.6 × 105 (3.4 × 104) b | 5.8 × 104 (9.0 × 103) b | 4.7 × 105 (3.5 × 105) ab | 4.2 × 104 (6.9 × 103) b | 6.5 × 105 (9.1 × 104) a |
Methanotrophs type I (16S rRNA) | 1.1 × 109 (4.5 × 108) a | 3.9 × 107 (1.9 × 107) b | 3.5 × 107 (7.2 × 106) b | 2.4 × 107 (1.0 × 107) b | 6.5 × 107 (1.1 × 107) b |
Methanotrophs type II (16S rRNA) | 2.6 × 106 (2.1 × 106) b | 2.9 × 106 (1.6 × 106) b | 1.2 × 107 (6.5 × 106) b | 4.5 × 106 (1.8 × 106) b | 8.6 × 107 (4.9 × 107) a |
Diazothrophs (nifH) | 5.2 × 108 (2.9 × 108) b | 1.7 × 108 (7.0 × 107) b | 3.2 × 108 (1.3 × 108) b | 3.3 × 108 (2.1 × 108) b | 4.2 × 109 (1.2 × 109) a |
Nitrifiers archaea (amoA) | 5.8 × 105 (1.5 × 105) b | 2.9 × 105 (2.8 × 104) b | 5.6 × 105 (1.2 × 105) b | 4.5 × 105 (5.9 × 104) b | 4.7 × 106 (7.0 × 105) a |
Nitrifiers bacteria (amoA) | 3.8 × 105 (1.2 × 105) b | 6.4 × 104 (1.9 × 104) b | 2.1 × 105 (1.7 × 104) b | 1.8 × 105 (4.6 × 104) b | 2.0 × 106 (3.0 × 105) a |
Denitrifiers (nirK) | 2.5 × 107 (1.8 × 107) b | 4.8 × 106 (3.5 × 106) b | 7.7 × 106 (2.7 × 106) b | 7.9 × 106 (1.3 × 106) b | 1.6 × 108 (7.2 × 107) a |
Denitrifiers (nosZ) | 1.2 × 107 (4.7 × 106) b | 4.6 × 106 (1.5 × 106) b | 1.1 × 107 (4.1 × 106) b | 1.4 × 107 (3.8 × 106) b | 2.2 × 108 (3.3 × 107) a |
TN | TC | C/N | pH | CO2 | CH4 | N2O | |
---|---|---|---|---|---|---|---|
CO2 | 0.76 *** | n.s. | −0.80 *** | −0.62 *** | - | n.s. | n.s. |
Fungi | n.s. | n.s. | n.s. | −0.48 * | n.s. | n.s. | n.s. |
Bacteria | 0.82 *** | 0.54 * | −0.57 ** | n.s. | 0.60 ** | n.s. | n.s. |
Actinobacteria | 0.83 *** | 0.57 * | −0.61 ** | n.s. | 0.59 ** | n.s. | n.s. |
Methanogens | n.s. | n.s. | n.s. | n.s. | n.s. | 0.75 * | n.s. |
Methanotrophs I | n.s. | n.s. | 0.44 * | 0.54 * | n.s. | n.s. | n.s. |
Methanotrophs II | 0.55 * | 0.65 ** | −0.44 * | n.s. | n.s. | n.s. | n.s. |
AOB | 0.67 ** | 0.84 *** | −0.52 * | n.s. | n.s. | n.s. | n.s. |
AOA | 0.74 ** | 0.77 *** | −0.57 *** | n.s. | n.s. | n.s. | n.s. |
nirK | n.s. | 0.86 *** | n.s. | n.s. | n.s. | n.s. | n.s. |
nosZ | 0.72 ** | 0.75 ** | −0.56 ** | n.s. | 0.46 * | n.s. | n.s. |
nifH | 0.46 * | 0.78 ** | n.s. | n.s. | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastorelli, R.; Paletto, A.; Agnelli, A.E.; Lagomarsino, A.; De Meo, I. Microbial Diversity and Ecosystem Functioning in Deadwood of Black Pine of a Temperate Forest. Forests 2021, 12, 1418. https://doi.org/10.3390/f12101418
Pastorelli R, Paletto A, Agnelli AE, Lagomarsino A, De Meo I. Microbial Diversity and Ecosystem Functioning in Deadwood of Black Pine of a Temperate Forest. Forests. 2021; 12(10):1418. https://doi.org/10.3390/f12101418
Chicago/Turabian StylePastorelli, Roberta, Alessandro Paletto, Alessandro Elio Agnelli, Alessandra Lagomarsino, and Isabella De Meo. 2021. "Microbial Diversity and Ecosystem Functioning in Deadwood of Black Pine of a Temperate Forest" Forests 12, no. 10: 1418. https://doi.org/10.3390/f12101418
APA StylePastorelli, R., Paletto, A., Agnelli, A. E., Lagomarsino, A., & De Meo, I. (2021). Microbial Diversity and Ecosystem Functioning in Deadwood of Black Pine of a Temperate Forest. Forests, 12(10), 1418. https://doi.org/10.3390/f12101418