Interspecific Variance of Suitable Habitat Changes for Four Alpine Rhododendron Species under Climate Change: Implications for Their Reintroductions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Occurrence Data
2.2. Environment Data
2.3. Study Area and Environment Variables Selection
2.4. Model Evaluation and Model Selection
2.5. Geospatial Analyses
3. Results
3.1. Model Selection and Evaluation
3.2. Current Habitat Distribution and Dominant Environment Variables
3.3. Projected Changes in Habitat Suitability for Future Periods
3.4. Shifts of the Centroids of the High-Suitability Habitat in the Future
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Factor | Bio2 | Bio3 | Bio4 | Bio6 | Bio9 | Bio13 | Bio15 | Bio17 | Asp | Ele | Slo | T_CaCO3 | T_CLAY | T_GRAVEL | T_OC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bio2 | 1.00 | ||||||||||||||
Bio3 | 0.59 | 1.00 | |||||||||||||
Bio4 | 0.27 | −0.59 | 1.00 | ||||||||||||
Bio6 | −0.85 | −0.19 | −0.61 | 1.00 | |||||||||||
Bio9 | −0.77 | −0.07 | −0.68 | 0.99 | 1.00 | ||||||||||
Bio13 | −0.67 | 0.03 | −0.72 | 0.84 | 0.85 | 1.00 | |||||||||
Bio15 | 0.75 | 0.45 | 0.20 | −0.68 | −0.64 | −0.50 | 1.00 | ||||||||
Bio17 | −0.78 | −0.33 | −0.39 | 0.77 | 0.75 | 0.70 | −0.73 | 1.00 | |||||||
Asp | −0.02 | −0.01 | −0.02 | 0.01 | 0.01 | 0.02 | −0.02 | 0.02 | 1.00 | ||||||
Ele | 0.87 | 0.44 | 0.33 | −0.93 | −0.89 | −0.74 | 0.73 | −0.73 | −0.02 | 1.00 | |||||
Slo | −0.07 | 0.19 | −0.32 | 0.15 | 0.16 | 0.23 | −0.13 | 0.04 | 0.03 | −0.07 | 1.00 | ||||
T_CaCO3 | −0.23 | −0.31 | 0.15 | 0.19 | 0.16 | 0.05 | −0.17 | 0.03 | −0.01 | −0.30 | −0.11 | 1.00 | |||
T_CLAY | −0.53 | −0.09 | −0.42 | 0.68 | 0.68 | 0.59 | −0.48 | 0.57 | 0.01 | −0.64 | 0.09 | 0.08 | 1.00 | ||
T_GRAVEL | 0.14 | 0.10 | 0.02 | −0.14 | −0.12 | −0.11 | 0.18 | 0.00 | 0.00 | 0.18 | −0.10 | −0.09 | −0.22 | 1.00 | |
T_OC | 0.14 | 0.11 | −0.02 | −0.10 | −0.08 | −0.04 | 0.07 | −0.04 | 0.00 | 0.11 | −0.05 | −0.10 | 0.07 | 0.14 | 1.00 |
Factor | Bio4 | Bio10 | Bio12 | Bio14 | Bio19 | Asp | Slo |
---|---|---|---|---|---|---|---|
Bio4 | 1.00 | ||||||
Bio10 | −0.51 | 1.00 | |||||
Bio12 | −0.42 | 0.49 | 1.00 | ||||
Bio14 | −0.56 | 0.63 | 0.72 | 1.00 | |||
Bio19 | −0.53 | 0.55 | 0.74 | 0.95 | 1.00 | ||
Asp | −0.01 | −0.05 | 0.01 | 0.00 | 0.00 | 1.00 | |
Slo | 0.21 | −0.20 | −0.13 | −0.21 | −0.15 | 0.00 | 1.00 |
Factor | Bio2 | Bio5 | Bio7 | Bio15 | Bio16 | Slo | T_ECE | T_OC |
---|---|---|---|---|---|---|---|---|
Bio2 | 1.00 | |||||||
Bio5 | −0.83 | 1.00 | ||||||
Bio7 | 0.67 | −0.59 | 1.00 | |||||
Bio15 | 0.75 | −0.70 | 0.48 | 1.00 | ||||
Bio16 | −0.68 | 0.70 | −0.84 | −0.53 | 1.00 | |||
Slo | −0.07 | 0.05 | −0.25 | −0.13 | 0.24 | 1.00 | ||
T_ECE | 0.04 | 0.02 | 0.09 | 0.01 | −0.07 | −0.08 | 1.00 | |
T_OC | 0.14 | −0.12 | 0.05 | 0.07 | −0.04 | −0.05 | −0.05 | −0.10 |
Factor | Bio2 | Bio3 | Bio4 | Bio5 | Bio7 | Bio11 | Bio13 | Bio16 | Bio17 | Asp | Ele | Slo | T_CaCO3 | T_Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bio2 | 1.00 | |||||||||||||
Bio3 | 0.59 | 1.00 | ||||||||||||
Bio4 | 0.27 | −0.59 | 1.00 | |||||||||||
Bio5 | −0.83 | −0.43 | −0.29 | 1.00 | ||||||||||
Bio7 | 0.67 | −0.18 | 0.89 | −0.59 | 1.00 | |||||||||
Bio11 | −0.78 | −0.08 | −0.68 | 0.90 | −0.87 | 1.00 | ||||||||
Bio13 | −0.67 | 0.03 | −0.72 | 0.69 | −0.84 | 0.86 | 1.00 | |||||||
Bio16 | −0.68 | 0.01 | −0.71 | 0.70 | −0.84 | 0.87 | 1.00 | 1.00 | ||||||
Bio17 | −0.78 | −0.33 | −0.39 | 0.70 | −0.67 | 0.73 | 0.70 | 0.71 | 1.00 | |||||
Asp | −0.02 | −0.01 | −0.02 | 0.00 | −0.03 | 0.01 | 0.02 | 0.02 | 0.02 | 1.00 | ||||
Ele | 0.87 | 0.44 | 0.33 | −0.98 | 0.63 | −0.91 | −0.74 | −0.76 | −0.73 | −0.02 | 1.00 | |||
Slo | −0.07 | 0.19 | −0.32 | 0.05 | −0.25 | 0.18 | 0.23 | 0.24 | 0.04 | 0.03 | −0.07 | 1.00 | ||
T_CaCO3 | −0.23 | −0.31 | 0.15 | 0.31 | 0.02 | 0.17 | 0.05 | 0.05 | 0.03 | −0.01 | −0.30 | −0.11 | 1.00 | |
T_CLAY | −0.53 | −0.09 | −0.42 | 0.64 | −0.56 | 0.68 | 0.59 | 0.60 | 0.57 | 0.01 | −0.64 | 0.09 | 0.08 | 1.00 |
Species | Current | RCP 2.6 | RCP 4.5 | RCP 8.5 | |||
---|---|---|---|---|---|---|---|
2050s | 2070s | 2050s | 2070s | 2050s | 2070s | ||
R. protistum | 90.74% | 91.59% | 90.56% | 90.25% | 91.27% | 91.40% | 91.89% |
R. rex subsp. rex | 71.17% | 68.31% | 67.77% | 68.67% | 68.18% | 69.85% | 69.51% |
R. praestans | 77.41% | 74.93% | 76.74% | 76.61% | 77.39% | 77.10% | 75.06% |
R. sinogrande | 87.70% | 86.78% | 85.54% | 86.24% | 86.42% | 86.17% | 86.29% |
References
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Dillon, G.R.; De Ruffray, P.; Vidal, C.; Pierrat, J.C.; Gégout, J.C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Moritz, C.; Agudo, R. The future of species under climate change: Resilience or decline? Science 2013, 341, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraër, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D. Mountain Research Initiative Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Dirnböck, T.; Essl, F.; Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Chang. Biol. 2011, 17, 990–996. [Google Scholar] [CrossRef]
- Hülber, K.; Wessely, J.; Gattringer, A.; Moser, D.; Kuttner, M.; Essl, F.; Leitner, M.; Winkler, M.; Ertl, S.; Willner, W.; et al. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Glob. Chang. Biol. 2016, 22, 2608–2619. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, G.E.; Hamrick, J.L.; Trapnell, D.W. Ecological niche modelling and phylogeography reveal range shifts of pawpaw, a North American understorey tree. J. Biogeogr. 2021, 48, 974–989. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Wang, Y.H.; Shen, S.K. De novo assembly of transcriptome and development of novel EST-SSR markers in Rhododendron rex Lévl. Through illumina sequencing. Front. Plant Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N.; Wang, Z.H.; Su, X.Y.; Xu, X.T.; Lyu, L.; Liu, Y.P.; Dimitrov, D.; Kennedy, J.D.; Wang, Q.G.; Tang, Z.Y.; et al. Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Glob. Ecol. Biogeogr. 2018, 27, 913–924. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.P.; Nielsen, J.; Chamberlain, D.F.; Li, X.Y.; Sun, W.B. The conservation of Rhododendrons is of greater urgency than has been previously acknowledged in China. Biodivers. Conserv. 2014, 23, 3149–3154. [Google Scholar] [CrossRef]
- Kumar, P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: Limitations and challenges. Biodivers. Conserv. 2012, 21, 1251–1266. [Google Scholar] [CrossRef]
- Yu, F.Y.; Wang, T.J.; Groen, T.A.; Skidmore, A.K.; Yang, X.F.; Ma, K.P.; Wu, Z.F. Climate and land use changes will degrade the distribution of Rhododendrons in China. Sci. Total Environ. 2019, 659, 515–528. [Google Scholar] [CrossRef]
- Lu, Y.P.; Liu, H.C.; Chen, W.; Yao, J.; Huang, Y.P.; Zhang, Y.; He, X.Y. Conservation planning of the genus Rhododendron in Northeast China based on current and future suitable habitat distributions. Biodivers. Conserv. 2021, 30, 673–697. [Google Scholar] [CrossRef]
- Kozak, K.H.; Graham, C.H.; Wiens, J.J. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 2008, 23, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Li, X.; Zhao, Z.F.; Nawaz, Z. Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China. Sci. Total Environ. 2019, 648, 1–11. [Google Scholar] [CrossRef]
- Feng, L.; Sun, J.J.; Shi, Y.B.; Wang, G.B.; Wang, T.L. Predicting suitable habitats of Camptotheca acuminata considering both climatic and soil variables. Forests 2020, 11, 891. [Google Scholar] [CrossRef]
- Fragnière, Y.; Pittet, L.; Clément, B.; Bétrisey, S.; Gerber, E.; Ronikier, M.; Parisod, C.; Kozlowski, G. Climate Change and Alpine Screes: No Future for Glacial Relict Papaver occidentale (Papaveraceae) in Western Prealps. Diversity 2020, 12, 346. [Google Scholar] [CrossRef]
- Hunter-ayad, J.; Seddon, P.J.; Hunter-ayad, J. Reintroduction modelling: A guide to choosing and combining models for species reintroductions. J. Appl. Ecol. 2020, 57, 1233–1243. [Google Scholar] [CrossRef]
- Tariq, M.; Bhatt, S.K.N.I.D.; Bhavsar, D.; Roy, A.; Pande, V. Phytosociological and niche distribution study of Paris polyphylla smith, an important medicinal herb of Indian Himalayan region. Trop. Ecol. 2021, 62, 163–173. [Google Scholar] [CrossRef]
- Wani, I.A.; Verma, S.; Mushtaq, S.; Alsahli, A.A.; Alyemeni, M.N.; Tariq, M.; Pant, S. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. Saudi J. Biol. Sci. 2021, 28, 2109–2122. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.J.; Cheng, X.; Yang, Z.F.; Zhang, S.H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Ardestani, E.G.; Tarkesh, M.; Bassiri, M.; Vahabi, M.R. Potential habitat modeling for reintroduction of three native plant species in central Iran. J. Arid Land 2015, 7, 381–390. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Dakhil, M.A.; Bacchetta, G.; El-Sherbeny, G.A. Predicting the Potential Current and Future Distribution of the Endangered Endemic Vascular Plant Primula boveana Decne. ex Duby in Egypt. Plants 2020, 9, 957. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.G.; Jin, J.M. Red List of Endangered Plants in China; Science Press: Beijing, China, 1992. [Google Scholar]
- Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Volume AR5, p. 1535. [Google Scholar]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef] [Green Version]
- Escobar, L.E.; Lira-Noriega, A.; Medina-Vogel, G.; Townsend Peterson, A. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health 2014, 9, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.P.; Peterson, A.T. Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol. Invasions 2017, 19, 2519–2532. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing. 2018. Available online: https://www/R-project.org (accessed on 1 October 2021).
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Kass, J.M.; Vilela, B.; Aiello-Lammens, M.E.; Muscarella, R.; Merow, C.; Anderson, R.P. Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol. Evol. 2018, 9, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_sourse/maxent/ (accessed on 1 October 2021).
- Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Feng, X.; Lin, C.; Qiao, H.; Ji, L. Assessment of climatically suitable area for Syrmaticus reevesii under climate change. Endanger. Species Res. 2015, 28, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Guillaumot, C.; Moreau, C.; Danis, B.; Saucède, T. Extrapolation in species distribution modelling. Application to Southern Ocean marine species. Prog. Oceanogr. 2020, 188, 102438. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Slatyer, R.A.; Hirst, M.; Sexton, J.P. Niche breadth predicts geographical range size: A general ecological pattern. Ecol. Lett. 2013, 16, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Frishkoff, L.O.; Karp, D.S.; Flanders, J.R.; Zook, J.; Hadly, E.A.; Daily, G.C.; M’Gonigle, L.K. Climate change and habitat conversion favour the same species. Ecol. Lett. 2016, 19, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, J.; Svenning, J. Climate-related range shifts—A global multidimensional synthesis and new research directions. Ecography 2015, 38, 15–28. [Google Scholar] [CrossRef]
- Anderson, R.P.; Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 2010, 37, 1378–1393. [Google Scholar] [CrossRef]
- Guevara, L.; Gerstner, B.E.; Kass, J.M.; Anderson, R.P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. Glob. Chang. Biol. 2018, 24, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Eşen, D.; Zedaker, S.M.; Kirwan, J.L.; Mou, P. Soil and site factors influencing purple-flowered rhododendron (Rhododendron ponticum L.) and eastern beech forests (Fagus orientalis Lipsky) in Turkey. For. Ecol. Manag. 2004, 203, 229–240. [Google Scholar] [CrossRef]
- Tokuoka, Y.; Hayakawa, H.; Hashigoe, K. Spatial distribution and environmental preferences of a threatened species (Rhododendron uwaense) and two common species (R. dilatatum var decandrum and R. weyrichii) in southwestern Japan. J. For. Res. 2020, 25, 113–119. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.H.; Wang, Y.H.; Shen, S.K. Genetic diversity and population structure of Rhododendron rex Subsp. rex inferred from microsatellite markers and chloroplast DNA sequences. Plants 2020, 9, 338. [Google Scholar] [CrossRef] [Green Version]
Species | Variables Abbreviation |
---|---|
R. protistum | Bio3, Bio4, Bio13, Bio15, Bio17, Slo, Asp, T_CaCO3, T_CLAY, T_GRAVEL, T_OC |
R. rex subsp. rex | Bio4, Bio10, Bio12, Bio14, Slo, Asp, T_USDA_TEX_CLASS |
R. praestans | Bio2, Bio7, Bio15, Slo, T_ECE, T_OC, T_USDA_TEX_CLASS |
R. sinogrande | Bio2, Bio3, Bio4, Bio13, Bio17, Slo, Asp, T_CaCO3, T_CLAY, T_USDA_TEX_CLASS |
Data Sources | Abbreviation | Description | Units |
---|---|---|---|
Worldclim Database (https://www.worldclim.org/, accessed on 1 October 2021) original resolution 30 arc-s (~1 km2) | Bio2 | Mean Diurnal Range (Mean of monthly (max temp–min temp)) | °C |
Bio3 | Isothermality (Bio2/Bio7×100) | - | |
Bio4 | Temperature Seasonality (standard deviation ×100) | C of V | |
Bio7 | Temperature Annual Range | °C | |
Bio10 | Mean Temperature of Warmest Quarter | °C | |
Bio12 | Annual Precipitation | mm | |
Bio13 | Precipitation of Wettest Month | mm | |
Bio14 | Precipitation of Driest Month | mm | |
Bio15 | Precipitation Seasonality (Coefficient of Variation) | C of V | |
Bio17 | Precipitation of Driest Quarter | mm | |
Harmonized World Soil Database (http://www.iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html, accessed on 1 October 2021) original resolution 30 arc-s (~1 km2) | T_CaCO3 | Topsoil calcium carbon | % weight |
T_CLAY | Topsoil clay fraction | % weight | |
T_GRAVEL | Topsoil gravel content | % vol | |
T_OC | Topsoil organic carbon | % weight | |
T_ECE | Topsoil salinity | dS/m | |
T_USDA_TEX | Topsoil USDA texture classification | name | |
SRTM Database (http://srtm.csi.cgiar.org/, accessed on 1 October 2021) original resolution 90 m | Slo | Slope | ° |
Asp | Aspect | °C |
Species | FC | RM | Avg.Test. AUC | Avg.Test. or 10 pct | Delta.AICc | AUC | TSS |
---|---|---|---|---|---|---|---|
R. protistum | LQH | 2.5 | 0.99 | 0.33 | 0 | 0.996 ± 0.002 | 0.94 ± 0.16 |
R. rex subsp. rex | LQHP | 2.5 | 0.92 | 0.15 | 0 | 0.918 ± 0.050 | 0.72 ± 0.23 |
R. praestans | LQHP | 1.5 | 0.94 | 0.13 | 0 | 0.922 ± 0.105 | 0.66 ± 0.41 |
R. sinogrande | LQH | 1.5 | 0.96 | 0.28 | 0 | 0.975 ± 0.012 | 0.79 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.-H.; Li, K.-J.; Liu, X.-F.; Yang, L.; Shen, S.-K. Interspecific Variance of Suitable Habitat Changes for Four Alpine Rhododendron Species under Climate Change: Implications for Their Reintroductions. Forests 2021, 12, 1520. https://doi.org/10.3390/f12111520
Zhang J-H, Li K-J, Liu X-F, Yang L, Shen S-K. Interspecific Variance of Suitable Habitat Changes for Four Alpine Rhododendron Species under Climate Change: Implications for Their Reintroductions. Forests. 2021; 12(11):1520. https://doi.org/10.3390/f12111520
Chicago/Turabian StyleZhang, Jin-Hong, Kun-Ji Li, Xiao-Fei Liu, Liu Yang, and Shi-Kang Shen. 2021. "Interspecific Variance of Suitable Habitat Changes for Four Alpine Rhododendron Species under Climate Change: Implications for Their Reintroductions" Forests 12, no. 11: 1520. https://doi.org/10.3390/f12111520
APA StyleZhang, J. -H., Li, K. -J., Liu, X. -F., Yang, L., & Shen, S. -K. (2021). Interspecific Variance of Suitable Habitat Changes for Four Alpine Rhododendron Species under Climate Change: Implications for Their Reintroductions. Forests, 12(11), 1520. https://doi.org/10.3390/f12111520