Chemical Characterization of Waterlogged Charred Wood: The Case of a Medieval Shipwreck
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energy Dispersive Analysis (EDS)
2.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3. X-Ray Diffraction Analysis (XRD)
2.4. Proximate Analysis
3. Results and Discussion
3.1. EDS
3.2. FTIR
3.3. XRD
3.4. Proximate Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koutsouflakis, G.; Rieth, E. A late-12th-century byzantine shipwreck in the port of Rhodes A preliminary report. In Under the Mediterranean I Studies in Maritime Archaeology; Demesticha, S., Blue, L., Eds.; Sidestone Press: Leiden, The Netherlands, 2021. [Google Scholar]
- Koutsouflakis, G. Three shipwrecks of the medieval era in the commercial port of Rhodes. In Proceedings of the Archeological Work in Aegean Islands, Lesbos, Greece, 27 November–1 December 2013; Birtacha, K., Triantaphyllidis, P., Sarantidis, K., Eds.; pp. 477–500. [Google Scholar]
- Mitsi, E.; Pournou, A. Conserving a charred medieval shipwreck: A preliminary study. In Proceedings of the 14th ICOM-CC WOAM Conference, Portsmouth, UK, 20–24 May 2019. [Google Scholar]
- Stamm, A.J. Thermal degradation of wood and cellulose. Ind. Eng. Chem. 1956, 48, 413–417. [Google Scholar] [CrossRef]
- Shafizadeh, F. The chemistry of pyrolysis and combustion. Adv. Chem. 1984, 207, 489–529. [Google Scholar]
- Meincken, M.; Smit, N.H.; Steinmann, D. Physical properties of burnt timber, with special focus on the drying performance Physical properties of burnt timber, with special focus on the drying performance. Eur. J. Wood Wood Prod. 2015, 68, 455–461. [Google Scholar] [CrossRef]
- Bartlett, A.I.; Hadden, R.M.; Bisby, L.A. A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol. 2019, 55, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Kollmann, F.F.; Côté, W.A. Principles of Wood Science and Technology. Vol. I. Solid Wood; Springer: Berlin/Heidelberg, Germany, 1968; ISBN 9783642879302. [Google Scholar]
- Friquin, K.L. Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater. 2011, 35, 303–327. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.R.; Fang, M.X.; Luo, Z.Y.; Cen, K.F.; Chow, W.K. Bench-scale studies on wood pyrolysis under different environments. Fire Saf. Sci. 1994, 7, 94. [Google Scholar]
- Guo, Y.; Bustin, R. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: Implications for studies of inertinite in coals. Int. J. Coal Geol. 1998, 37, 29–53. [Google Scholar] [CrossRef]
- White, R.H.; Dietenberger, M. Wood products: Thermal degradation and fire. Encycl. Mater. Sci. Technol. 2001, 9712–9716. [Google Scholar] [CrossRef]
- Constantine, M.; Mooney, S.; Hibbert, B.; Marjo, C.; Bird, M.; Cohen, T.; Forbes, M.; Mcbeath, A.; Rich, A.; Stride, J. Science of the Total Environment Using charcoal, ATR FTIR and chemometrics to model the intensity of pyrolysis: Exploratory steps towards characterising fire events. Sci. Total Environ. 2021, 783, 147052. [Google Scholar] [CrossRef]
- Hill, C.A.S. Modifying the properties of wood. In Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 19–44. ISBN 9780470021729. [Google Scholar]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Scherrer, P.; Debye, P. Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgensrahlen [determination of the size and internal structure of colloidal particles using X-rays]. Nachr. Ges. Wiss. Göttingen Math.-Physik. Kl. 1918, 2, 101–120. [Google Scholar]
- Rutherford, D.; Wershaw, R.; Cox, L. Changes in Composition and Porosity Occurring during the Thermal Degradation of Wood and Wood Components: U.S. Geological Survey Scientific Investigations Report 2004-5292; U.S. Geological Survey: Reston, VA, USA, 2005; Volume 79.
- Sandström, M.; Jalilehvand, F.; Persson, I.; Fors, Y.; Damian, E.; Gelius, U.; Hall-Roth, I.; Dal, L.; Richards, V.L.; Godfrey, I. The sulphur threat to marine archaeological artefacts: Acid and iron removal from the Vasa. In Proceedings of the Conservation Science 2002, Edinburgh, UK, 22–24 May 2002; pp. 79–87. [Google Scholar]
- Monachon, M.; Albelda-Berenguer, M.; Pelé, C.; Cornet, E.; Guilminot, E.; Rémazeilles, C.; Joseph, E. Characterization of model samples simulating degradation processes induced by iron and sulfur species on waterlogged wood. Microchem. J. 2020, 155, 104756. [Google Scholar] [CrossRef]
- Fors, Y. Sulfur-Related Conservation Concerns for Marine Archaeological Wood. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2008. [Google Scholar]
- Remazeilles, C.; Tran, K.; Guilminot, E.; Conforto, E.; Refait, P. Study of Fe (II) sulphides in waterlogged archaeological wood. Stud. Conserv. 2013, 58, 297–307. [Google Scholar] [CrossRef]
- Fors, Y.; Nilsson, T.; Risberg, E.D.; Sandström, M.; Torssander, P. Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels. Int. Biodeterior. Biodegrad. 2008, 62, 336–347. [Google Scholar] [CrossRef]
- High, K.E.; Penkman, K.E.H. A review of analytical methods for assessing preservation in waterlogged archaeological wood and their application in practice. Herit. Sci. 2020, 8, 1–34. [Google Scholar] [CrossRef]
- Valenzuela-Calahorro, C.; Bernalte-Garcia, A.; Gómez-Serrano, V.; Bernalte-García, M.J. Infuence of particle size and pyrolysis conditions on yield, density and some textural paramreters of chars prepared from holm-oak wood. J. Anal. Appl. Pyrolysis 1987, 12, 61–70. [Google Scholar] [CrossRef]
- Todaro, L.; Rita, A.; Cetera, P.; D’Auria, M. Thermal treatment modifies the calorific value and ash content in some wood species. Fuel 2015, 140, 1–3. [Google Scholar] [CrossRef]
- Inari, G.N.; Petrissans, M.; Lambert, J.; Ehrhardt, J.J.; Gérardin, P. XPS characterization of wood chemical composition after heat-treatment. Surf. Interface Anal. 2006, 38, 1336–1342. [Google Scholar] [CrossRef]
- Kocaefe, D.; Huang, X.; Kocaefe, Y.; Boluk, Y. Quantitative characterization of chemical degradation of heat-treated wood surfaces during artificial weathering using XPS. Surf. Interface Anal. 2013, 45, 639–649. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 2012, 126, E336–E343. [Google Scholar] [CrossRef]
- Tintner, J.; Preimesberger, C.; Pfeifer, C.; Soldo, D.; Ottner, F.; Wriessnig, K.; Rennhofer, H.; Lichtenegger, H.; Novotny, E.H.; Smidt, E. Impact of pyrolysis temperature on charcoal characteristics. Ind. Eng. Chem. Res. 2018, 57, 15613–15619. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh-Und Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Popescu, M.-C.; Froidevaux, J.; Navi, P.; Popescu, C.-M. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 2013, 1033, 176–186. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Özgenç, Ö.; Durmaz, S.; Boyacı, İ.H.; Eksi-Koçak, H. ATR-FTIR spectroscopic analysis of thermally modified wood degraded by rot fungi. Drewno 2018, 61. [Google Scholar] [CrossRef]
- Kubovsk, I.; Ka, D. Structural changes of oak wood main components caused by thermal modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Kotilainen, R.A.; Toivanen, T.-J.; Alén, R.J. FTIR monitoring of chemical changes in softwood during heating. J. Wood Chem. Technol. 2000, 20, 307–320. [Google Scholar] [CrossRef]
- Kim, Y.S. Short note: Chemical characteristics of waterlogged archaeological wood. Holzforschung 1990, 44, 169–172. [Google Scholar] [CrossRef]
- Pournou, A. Wood deterioration by aquatic microorganisms. In Biodeterioration of Wooden Cultural Heritage: Organisms and Decay Mechanisms in Aquatic and Terrestrial Ecosystems; Pournou, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 177–260. ISBN 978-3-030-46504-9. [Google Scholar]
- Pedersen, N.B.; Gierlinger, N.; Thygesen, L.G. Bacterial and abiotic decay in waterlogged archaeological Picea abies (L.) Karst studied by confocal Raman imaging and ATR-FTIR spectroscopy. Holzforschung 2015, 69, 103–112. [Google Scholar] [CrossRef]
- Gelbrich, J.; Mai, C.; Militz, H. Chemical changes in wood degraded by bacteria. Int. Biodeterior. Biodegrad. 2008, 61, 24–32. [Google Scholar] [CrossRef]
- Nilsson, B.T.; Daniel, G.; Kirk, T.K.; Obst, J.R.; Service, F. Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 1989, 43, 11–18. [Google Scholar] [CrossRef]
- Pandey, K.; Pitman, A. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Cortizas, A.M. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Sci. Technol. 2018, 52, 487–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, S.; Wikberg, H.; Pesonen, E.; Maunu, S.L.; Serimaa, R. Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees 2004, 18, 346–353. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, U.P.; Reiner, R.R.; Ralph, S.A.; Forest, A.; Gi, O.; Drive, P. Estimation of cellulose crystallinity of lignocelluloses using near-IR. J. Agric. Food Chem. 2013, 61, 103–113. [Google Scholar] [CrossRef]
- Kwon, S.-M.; Kim, N.-H.; Cha, D.-S. An investigation on the transition characteristics of the wood cell walls during carbonization. Wood Sci. Technol. 2009, 43, 487–498. [Google Scholar] [CrossRef]
- Giachi, G.; Bettazzi, F.; Chimichi, S.; Staccioli, G. Chemical characterisation of degraded wood in ships discovered in a recent excavation of the Etruscan and Roman harbour of Pisa. J. Cult. Herit. 2003, 4, 75–83. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Larsson, P.T.; Tibirna, C.M.; Vasile, C. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy. Appl. Spectrosc. 2010, 64, 1054–1060. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Hu, D. Degradation features of archaeological wood surface to deep inside a case study on wooden boards of marquis of Haihun’s outer coffin. Wood Res. 2018, 63, 419–430. [Google Scholar]
- Howell, C.; Hastrup, A.C.S.; Goodell, B.; Jellison, J. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi. Int. Biodeterior. Biodegrad. 2009, 63, 414–419. [Google Scholar] [CrossRef]
- Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A.B.; Ståhl, K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12, 563–576. [Google Scholar] [CrossRef]
- French, A.D.; Cintron, M.S. Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 2013, 20, 583–588. [Google Scholar] [CrossRef]
- Sivonen, H.; Maunu, S.L.; Sundholm, F.; Jämsä, S.; Viitaniemi, P. Magnetic resonance studies of thermally modified wood. Holzforschung 2002, 56, 648–654. [Google Scholar] [CrossRef]
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Tarmian, A.; Mastouri, A. Changes in moisture exclusion efficiency and crystallinity of thermally modified wood with aging. iFor.-Biogeosci. For. 2019, 12, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Dai, G.; Ru, B.; Zhao, Y.; Wang, X.; Xiao, G. In fluence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy 2017, 120, 864–871. [Google Scholar] [CrossRef]
- Fuwape, J.A. Effects of carbonisation temperature on charcoal from some tropical trees. Bioresour. Technol. 1996, 57, 91–94. [Google Scholar] [CrossRef]
- Ruiz-aquino, F.; Ruiz-ángel, S.; Sotomayor-castellanos, J.R. Energy characteristics of wood and charcoal of selected tree species in Mexico. Wood Res. 2019, 64, 71–82. [Google Scholar]
- Dias Junior, A.F.; Esteves, R.P.; Da Silva, Á.M.; Sousa Júnior, A.D.; Oliveira, M.P.; Brito, J.O.; Napoli, A.; Braga, B.M. Investigating the pyrolysis temperature to define the use of charcoal. Eur. J. Wood Wood Prod. 2020, 78, 193–204. [Google Scholar] [CrossRef]
- Mikkola, E. Charring of Wood Based Materials. Fire Saf. Sci. 1991, 3, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Lowden, L.A.; Hull, T.R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
Sample | 2θ (I200) a | 2θ (Iam) a | CrI | L (nm) |
---|---|---|---|---|
Pinus brutia | 25.49 | 19.83 | 41.7% | 2.29 |
Pinus halepensis | 25.70 | 20.70 | 41.8% | 2.51 |
Semi-charred | 25.27 | 21.08 | 47.4% | 2.75 |
Uncharred | 26.16 | 21.05 | 53.2% | 1.10 |
Charred b | - | - | - | - |
Sample | Moisture Content | Volatile Matter | Ash Content | Fixed Carbon |
---|---|---|---|---|
Semi-charred | 6.53 | 75.07 | 1.87 | 16.51 |
Charred | 6.71 | 24.16 | 3.53 | 65.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsi, E.; Boyatzis, S.; Pournou, A. Chemical Characterization of Waterlogged Charred Wood: The Case of a Medieval Shipwreck. Forests 2021, 12, 1594. https://doi.org/10.3390/f12111594
Mitsi E, Boyatzis S, Pournou A. Chemical Characterization of Waterlogged Charred Wood: The Case of a Medieval Shipwreck. Forests. 2021; 12(11):1594. https://doi.org/10.3390/f12111594
Chicago/Turabian StyleMitsi, Eirini, Stamatis Boyatzis, and Anastasia Pournou. 2021. "Chemical Characterization of Waterlogged Charred Wood: The Case of a Medieval Shipwreck" Forests 12, no. 11: 1594. https://doi.org/10.3390/f12111594
APA StyleMitsi, E., Boyatzis, S., & Pournou, A. (2021). Chemical Characterization of Waterlogged Charred Wood: The Case of a Medieval Shipwreck. Forests, 12(11), 1594. https://doi.org/10.3390/f12111594