Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options
Abstract
:1. Introduction
2. The Functional Zoning Approach
3. Revisiting the Concept of Functional Zoning in the Context of Climate Change
4. From Incremental to Transformative Adaptation Approaches to Address Forest Vulnerabilities
5. A Theoretical Case Study in the Boreal Forest of Eastern Canada
5.1. Biogeographic Context
5.2. Main Management Issues
5.3. Portfolio of Potential Options
6. Discussion: Some of the Challenges Ahead
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Puettmann, K.J.; Wilson, S.M.; Baker, S.C.; Donoso, P.J.; Drössler, L.; Amente, G.; Harvey, B.D.; Knoke, T.; Lu, Y.; Nocentini, S.; et al. Silvicultural Alternatives to Conventional Even-Aged Forest Management—What Limits Global Adoption? For. Ecosyst. 2015, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Messier, C.; Bauhus, J.; Doyon, F.; Maure, F.; Sousa-Silva, R.; Nolet, P.; Mina, M.; Aquilué, N.; Fortin, M.-J.; Puettmann, K. The Functional Complex Network Approach to Foster Forest Resilience to Global Changes. For. Ecosyst. 2019, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Chmielewski, F.-M.; Rötzer, T. Response of Tree Phenology to Climate Change across Europe. Agric. For. Meteorol. 2001, 108, 101–112. [Google Scholar] [CrossRef]
- Charru, M.; Seynave, I.; Hervé, J.-C.; Bertrand, R.; Bontemps, J.-D. Recent Growth Changes in Western European Forests Are Driven by Climate Warming and Structured across Tree Species Climatic Habitats. Ann. For. Sci. 2017, 74, 33. [Google Scholar] [CrossRef]
- Nolet, P.; Kneeshaw, D. Extreme Events and Subtle Ecological Effects: Lessons from a Long-Term Sugar Maple–American Beech Comparison. Ecosphere 2018, 9, e02336. [Google Scholar] [CrossRef] [Green Version]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate Change and Forests of the Future: Managing in the Face of Uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- Aplet, G.H.; Mckinley, P.S. A Portfolio Approach to Managing Ecological Risks of Global Change. Ecosyst. Health Sustain. 2017, 3, e01261. [Google Scholar] [CrossRef]
- Dudney, J.; Hobbs, R.J.; Heilmayr, R.; Battles, J.J.; Suding, K.N. Navigating Novelty and Risk in Resilience Management. Trends Ecol. Evol. 2018, 33, 863–873. [Google Scholar] [CrossRef]
- Janowiak, M.K.; Swanston, C.W.; Nagel, L.M.; Brandt, L.A.; Butler, P.R.; Handler, S.D.; Shannon, P.D.; Iverson, L.R.; Matthews, S.N.; Prasad, A.; et al. A Practical Approach for Translating Climate Change Adaptation Principles into Forest Management Actions. J. For. 2014, 112, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Swanston, C.W.; Janowiak, M.K.; Brandt, L.A.; Butler, P.R.; Handler, S.D.; Shannon, P.D.; Lewis, A.D.; Hall, K.; Fahey, R.T.; Scott, L.; et al. Forest Adaptation Resources: Climate Change Tools and Approaches for Land Managers, 2nd ed.; United States Department of Agriculture: Newtown Square, PA, USA, 2016. [Google Scholar]
- Nagel, L.M.; Palik, B.J.; Battaglia, M.A.; D’Amato, A.W.; Guldin, J.M.; Swanston, C.W.; Janowiak, M.K.; Powers, M.P.; Joyce, L.A.; Millar, C.I.; et al. Adaptive Silviculture for Climate Change: A National Experiment in Manager-Scientist Partnerships to Apply an Adaptation Framework. J. For. 2017, 115, 167–178. [Google Scholar] [CrossRef]
- Zhang, Y. Multiple-Use Forestry vs. Forestland-Use Specialization Revisited. For. Policy Econ. 2005, 7, 143–156. [Google Scholar] [CrossRef]
- Tremblay, J.A.; Boulanger, Y.; Cyr, D.; Taylor, A.R.; Price, D.T.; St-Laurent, M.-H. Harvesting Interacts with Climate Change to Affect Future Habitat Quality of a Focal Species in Eastern Canada’s Boreal Forest. PLoS ONE 2018, 13, e191645. [Google Scholar] [CrossRef] [Green Version]
- Slimak, M.W.; Dietz, T. Personal Values, Beliefs, and Ecological Risk Perception. Risk Anal. 2006, 26, 1689–1705. [Google Scholar] [CrossRef] [PubMed]
- Pinkard, E.; Battaglia, M.; Bruce, J.; Matthews, S.; Callister, A.N.; Hetherington, S.; Last, I.; Mathieson, S.; Mitchell, C.; Mohammed, C.; et al. A History of Forestry Management Responses to Climatic Variability and Their Current Relevance for Developing Climate Change Adaptation Strategies. For. Int. J. For. Res. 2015, 88, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Jandl, R.; Spathelf, P.; Bolte, A.; Prescott, C.E. Forest Adaptation to Climate Change—Is Non-Management an Option? Ann. For. Sci. 2019, 76, 48. [Google Scholar] [CrossRef] [Green Version]
- Holling, C.S.; Meffe, G.K. Command and Control and the Pathology of Natural Resource Management. Conserv. Biol. 1996, 10, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Puettmann, K.J. Restoring the Adaptive Capacity of Forest Ecosystems. J. Sustain. For. 2014, 33, S15–S27. [Google Scholar] [CrossRef]
- Fischer, A.P. Adapting and Coping with Climate Change in Temperate Forests. Glob. Environ. Change 2019, 54, 160–171. [Google Scholar] [CrossRef]
- Andersson, E.; Keskitalo, E.C.H. Adaptation to Climate Change? Why Business-as-Usual Remains the Logical Choice in Swedish Forestry. Glob. Environ. Chang. 2018, 48, 76–85. [Google Scholar] [CrossRef]
- DeRose, R.J.; Long, J.N. Resistance and Resilience: A Conceptual Framework for Silviculture. For. Sci. 2014, 60, 1205–1212. [Google Scholar] [CrossRef]
- Seymour, R.S.; Hunter, M.L., Jr. New Forestry in Eastern Spruce-Fir Forests: Principles and Applications to Maine; Maine Agricultural and Forest Experimental Station: Orono, ME, USA, 1992. [Google Scholar]
- Messier, C.; Tittler, R.; Kneeshaw, D.D.; Gélinas, N.; Paquette, A.; Berninger, K.; Rheault, H.; Meek, P.; Beaulieu, N. TRIAD Zoning in Quebec: Experiences and Results after 5 Years. For. Chron. 2009, 85, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Glick, P.; Stein, B.A.; Edelson, N.A. Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment; National Wildlife Federation: Washington, DC, USA, 2011. [Google Scholar]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Boisvert-Marsh, L.; Royer-Tardif, S.; Nolet, P.; Doyon, F.; Aubin, I. Using a Trait-Based Approach to Compare Tree Species Sensitivity to Climate Change Stressors in Eastern Canada and Inform Adaptation Practices. Forests 2020, 11, 989. [Google Scholar] [CrossRef]
- Wade, A.A.; Hand, B.K.; Kovach, R.P.; Muhlfeld, C.C.; Waples, R.S.; Luikart, G. Assessments of Species’ Vulnerability to Climate Change: From Pseudo to Science. Biodivers. Conserv. 2017, 26, 223–229. [Google Scholar] [CrossRef]
- Belote, R.T.; Carroll, C.; Martinuzzi, S.; Michalak, J.; Williams, J.W.; Williamson, M.A.; Aplet, G.H. Assessing Agreement among Alternative Climate Change Projections to Inform Conservation Recommendations in the Contiguous United States. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kling, M.M.; Auer, S.L.; Comer, P.J.; Ackerly, D.D.; Hamilton, H. Multiple Axes of Ecological Vulnerability to Climate Change. Glob. Change Biol. 2020, 26, 2798–2813. [Google Scholar] [CrossRef]
- Edwards, J.E.; Pearce, C.; Ogden, A.E.; Williamson, T.B. Climate Change and Sustainable Forest Management in Canada: A Guidebook for Assessing Vulnerability and Mainstreaming Adaptation into Decision Making; Canadian Forest Service: Ottawa, ON, Canada, 2015. [Google Scholar]
- Brandt, L.A.; Butler, P.R.; Handler, S.D.; Janowiak, M.K.; Shannon, P.D.; Swanston, C.W. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change. J. For. 2017, 115, 212–221. [Google Scholar] [CrossRef]
- Aubin, I.; Boisvert-Marsh, L.; Kebli, H.; McKenney, D.; Pedlar, J.; Lawrence, K.; Hogg, E.H.; Boulanger, Y.; Gauthier, S.; Ste-Marie, C. Tree Vulnerability to Climate Change: Improving Exposure-Based Assessments Using Traits as Indicators of Sensitivity. Ecosphere 2018, 9, e02108. [Google Scholar] [CrossRef]
- Boucher, D.; Boulanger, Y.; Aubin, I.; Bernier, P.Y.; Beaudoin, A.; Guindon, L.; Gauthier, S. Current and Projected Cumulative Impacts of Fire, Drought, and Insects on Timber Volumes across Canada. Ecol. Appl. 2018, 28, 1245–1259. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Albrich, K.; Thom, D.; Rammer, W. Harnessing Landscape Heterogeneity for Managing Future Disturbance Risks in Forest Ecosystems. J. Environ. Manage. 2018, 209, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, S.; Bernier, P.; Burton, P.J.; Edwards, J.; Isaac, K.; Isabel, N.; Jayen, K.; Le Goff, H.; Nelson, E.A. Climate Change Vulnerability and Adaptation in the Managed Canadian Boreal Forest. Environ. Rev. 2014, 22, 256–285. [Google Scholar] [CrossRef]
- Spathelf, P.; Bolte, A.; van der Maaten, E. Is Close-to-Nature Silviculture (CNS) an Adequate Concept to Adapt Forests to Climate Change? Landbauforschung 2015, 65, 161–170. [Google Scholar] [CrossRef]
- Aubin, I.; Munson, A.D.; Cardou, F.; Burton, P.J.; Isabel, N.; Pedlar, J.H.; Paquette, A.; Taylor, A.R.; Delagrange, S.; Kebli, H.; et al. Traits to Stay, Traits to Move: A Review of Functional Traits to Assess Sensitivity and Adaptive Capacity of Temperate and Boreal Trees to Climate Change. Environ. Rev. 2016, 24, 164–186. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Beever, E.A.; Robertson, A.L.; Hofmann, G.E.; O’Leary, J. Assessing the components of adaptive capacity to improve conservation and management efforts under global change. Conserv. Biol. 2015, 29, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting Plant Phenology in Response to Global Change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef]
- Angeler, D.G.; Fried-Petersen, H.B.; Allen, C.R.; Garmestani, A.; Twidwell, D.; Chuang, W.-C.; Donovan, V.M.; Eason, T.; Roberts, C.P.; Sundstrom, S.M.; et al. Adaptive Capacity in Ecosystems. Adv. Ecol. Res. 2019, 60, 1–24. [Google Scholar] [CrossRef]
- Vincent, J.R.; Binkley, C.S. Efficient Multiple-Use Forestry May Require Land-Use Specialization. Land Econ. 1993, 69, 370. [Google Scholar] [CrossRef]
- Dudley, N.; Shadie, P.; Stolton, S. Guidelines for Applying Protected Area Management Categories Including IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types; IUCN: Gland, Switzerland, 2013; ISBN 978-2-8317-1636-7. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020—Key Findings; FAO: Rome, Italy, 2020. [Google Scholar]
- Lahey, W. An Independant Review of Forest Practices in Nova Scotia. Executive Summary, Conclusions and Recommendations; Dalhousie University: Halifax, NS, Canada, 2018. [Google Scholar]
- Côté, P.; Tittler, R.; Messier, C.; Kneeshaw, D.D.; Fall, A.; Fortin, M.-J. Comparing Different Forest Zoning Options for Landscape-Scale Management of the Boreal Forest: Possible Benefits of the TRIAD. For. Ecol. Manag. 2010, 259, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Carpentier, S.; Filotas, E.; Handa, I.T.; Messier, C. Trade-Offs between Timber Production, Carbon Stocking and Habitat Quality When Managing Woodlots for Multiple Ecosystem Services. Environ. Conserv. 2017, 44, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, E.J.; Lytle, D.E.; Swaty, R.; Loehle, C. Simulating the Cumulative Effects of Multiple Forest Management Strategies on Landscape Measures of Forest Sustainability. Landsc. Ecol. 2007, 22, 141–156. [Google Scholar] [CrossRef]
- Nitschke, C.R.; Innes, J.L. Integrating Climate Change into Forest Management in South-Central British Columbia: An Assessment of Landscape Vulnerability and Development of a Climate-Smart Framework. For. Ecol. Manag. 2008, 256, 313–327. [Google Scholar] [CrossRef]
- Galicia, L.; Potvin, C.; Messier, C. Maintaining the High Diversity of Pine and Oak Species in Mexican Temperate Forests: A New Management Approach Combining Functional Zoning and Ecosystem Adaptability. Can. J. For. Res. 2015, 45, 1358–1368. [Google Scholar] [CrossRef] [Green Version]
- Ishwaran, N.; Persic, A.; Tri, N.H. Concept and Practice: The Case of UNESCO Biosphere Reserves. Int. J. Environ. Sustain. Dev. 2008, 7, 118–131. [Google Scholar] [CrossRef]
- Hagerman, S.M.; Pelai, R. Responding to Climate Change in Forest Management: Two Decades of Recommendations. Front. Ecol. Environ. 2018, 16, 579–587. [Google Scholar] [CrossRef]
- Aubin, I.; Garbe, C.M.; Colombo, S.; Drever, C.R.; McKenney, D.W.; Messier, C.; Pedlar, J.; Saner, M.A.; Venier, L.; Wellstead, A.M.; et al. Why We Disagree about Assisted Migration: Ethical Implications of a Key Debate Regarding the Future of Canada’s Forests. For. Chron. 2011, 87, 755–765. [Google Scholar] [CrossRef]
- Park, A.; Talbot, C. Information Underload: Ecological Complexity, Incomplete Knowledge, and Data Deficits Create Challenges for the Assisted Migration of Forest Trees. BioScience 2018, 68, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive Forest Management in Central Europe: Climate Change Impacts, Strategies and Integrative Concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Webster, M.S.; Colton, M.A.; Darling, E.S.; Armstrong, J.; Pinsky, M.L.; Knowlton, N.; Schindler, D.E. Who Should Pick the Winners of Climate Change? Trends Ecol. Evol. 2017, 32, 167–173. [Google Scholar] [CrossRef]
- Daniel, C.J.; Ter-Mikaelian, M.T.; Wotton, B.M.; Rayfield, B.; Fortin, M.-J. Incorporating Uncertainty into Forest Management Planning: Timber Harvest, Wildfire and Climate Change in the Boreal Forest. For. Ecol. Manag. 2017, 400, 542–554. [Google Scholar] [CrossRef]
- Gauthier, S.; Vaillancourt, M.-A.; Leduc, A.; De Grandpré, L.; Kneeshaw, D.; Morin, H.; Drapeau, P.; Bergeron, Y. Ecosystem Management in the Boreal Forest; PUQ: Québec, QC, Canada, 2009; ISBN 978-2-7605-2382-1. [Google Scholar]
- Bauhus, J.; Puettmann, K.J.; Kuehne, C. Close-to-Nature Forest Management in Europe: Does It Support Complexity and Adaptability of Forest Ecosystems? In Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change; The Earthscan Forest Library Book Series; Routledge: Abingdon, UK, 2013; pp. 187–213. [Google Scholar]
- Park, A.; Puettmann, K.; Wilson, E.; Messier, C.; Kames, S.; Dhar, A. Can Boreal and Temperate Forest Management Be Adapted to the Uncertainties of 21st Century Climate Change? Crit. Rev. Plant Sci. 2014, 33, 251–285. [Google Scholar] [CrossRef]
- Dash, J.P.; Moore, J.R.; Lee, J.R.; Klápště, J.; Dungey, H.S. Stand Density and Genetic Improvement Have Site-Specific Effects on the Economic Returns from Pinus Radiata Plantations. For. Ecol. Manag. 2019, 446, 80–92. [Google Scholar] [CrossRef]
- Rubilar, R.A.; Lee Allen, H.; Fox, T.R.; Cook, R.L.; Albaugh, T.J.; Campoe, O.C. Advances in Silviculture of Intensively Managed Plantations. Curr. For. Rep. 2018, 4, 23–34. [Google Scholar] [CrossRef]
- Booth, T.H. Eucalypt Plantations and Climate Change. For. Ecol. Manag. 2013, 301, 28–34. [Google Scholar] [CrossRef]
- Bouvet, J.-M.; Makouanzi Ekomono, C.G.; Brendel, O.; Laclau, J.-P.; Bouillet, J.-P.; Epron, D. Selecting for Water Use Efficiency, Wood Chemical Traits and Biomass with Genomic Selection in a Eucalyptus Breeding Program. For. Ecol. Manag. 2020, 465, 118092. [Google Scholar] [CrossRef]
- Borrell, J.S.; Zohren, J.; Nichols, R.A.; Buggs, R.J.A. Genomic Assessment of Local Adaptation in Dwarf Birch to Inform Assisted Gene Flow. Evol. Appl. 2020, 13, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Warman, L.D.; Forsyth, D.M.; Sinclair, A.R.E.; Freemark, K.; Moore, H.D.; Barrett, T.W.; Pressey, R.L.; White, D. Species Distributions, Surrogacy, and Important Conservation Regions in Canada. Ecol. Lett. 2004, 7, 374–379. [Google Scholar] [CrossRef]
- Berteaux, D.; Ricard, M.; St-Laurent, M.-H.; Casajus, N.; Périé, C.; Beauregard, F.; de Blois, S. Northern Protected Areas Will Become Important Refuges for Biodiversity Tracking Suitable Climates. Sci. Rep. 2018, 8, 4623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laughlin, D.C. Applying Trait-Based Models to Achieve Functional Targets for Theory-Driven Ecological Restoration. Ecol. Lett. 2014, 17, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Paquette, A.; Messier, C. The Role of Plantations in Managing the World’s Forests in the Anthropocene. Front. Ecol. Environ. 2010, 8, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, N.; del Río, M.; Forrester, D.I.; Rodríguez-Soalleiro, R.; Pérez-Cruzado, C.; Cañellas, I.; Sixto, H. Mixed Short Rotation Plantations of Populus Alba and Robinia Pseudoacacia for Biomass Yield. For. Ecol. Manag. 2018, 410, 48–55. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for Declining Forest Resilience to Wildfires under Climate Change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Crotteau, J.S.; Morgan Varner, J.; Ritchie, M.W. Post-Fire Regeneration across a Fire Severity Gradient in the Southern Cascades. For. Ecol. Manag. 2013, 287, 103–112. [Google Scholar] [CrossRef]
- Davis, K.T.; Dobrowski, S.Z.; Higuera, P.E.; Holden, Z.A.; Veblen, T.T.; Rother, M.T.; Parks, S.A.; Sala, A.; Maneta, M.P. Wildfires and Climate Change Push Low-Elevation Forests across a Critical Climate Threshold for Tree Regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 6193–6198. [Google Scholar] [CrossRef] [Green Version]
- Comité d’Experts sur l’Aménagement Ėcosystémique des Forêts et les Changements Climatiques. L’Aménagement Écosystémique Des Forêts Dans Le Contexte des Changements Climatiques—Rapport Du Comité d’Experts; Gouvernement du Québec: Quebec, QC, Canada, 2017; p. 29. [Google Scholar]
- Kuparinen, A.; Savolainen, O.; Schurr, F.M. Increased Mortality Can Promote Evolutionary Adaptation of Forest Trees to Climate Change. For. Ecol. Manag. 2010, 259, 1003–1008. [Google Scholar] [CrossRef]
- Kremer, A.; Potts, B.M.; Delzon, S. Genetic Divergence in Forest Trees: Understanding the Consequences of Climate Change. Funct. Ecol. 2014, 28, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Lustenhouwer, N.; Wilschut, R.A.; Williams, J.L.; van der Putten, W.H.; Levine, J.M. Rapid Evolution of Phenology during Range Expansion with Recent Climate Change. Glob. Change Biol. 2018, 24, e534–e544. [Google Scholar] [CrossRef] [Green Version]
- Seastedt, T.R.; Hobbs, R.J.; Suding, K.N. Management of Novel Ecosystems: Are Novel Approaches Required? Front. Ecol. Environ. 2008, 6, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, M.; Aquilué, N.; Périé, C.; Lambert, M.-C. Tree Species Persistence under Warming Conditions: A Key Driver of Forest Response to Climate Change. For. Ecol. Manag. 2019, 442, 96–104. [Google Scholar] [CrossRef]
- Liang, Y.; Duveneck, M.J.; Gustafson, E.J.; Serra-Diaz, J.M.; Thompson, J.R. How Disturbance, Competition, and Dispersal Interact to Prevent Tree Range Boundaries from Keeping Pace with Climate Change. Glob. Change Biol. 2018, 24, e335–e351. [Google Scholar] [CrossRef]
- Hoffmann, S.; Irl, S.D.H.; Beierkuhnlein, C. Predicted Climate Shifts within Terrestrial Protected Areas Worldwide. Nat. Commun. 2019, 10, 4787. [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.H.; Santín, C. Global Trends in Wildfire and Its Impacts: Perceptions versus Realities in a Changing World. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Baker, W.L. Correction: Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA? PLoS ONE 2015, 10, e0141936. [Google Scholar] [CrossRef]
- Saucier, J.-P.; Robitaille, A.; Grondin, P. Cadre Bioclimatique du Québec. In Manuel de Foresterie, 2nd ed.; Doucet, R., Côté, M., Eds.; Ordre des Ingénieurs Forestiers du Québec: Quebec, QC, Canada, 2009; pp. 186–205. [Google Scholar]
- Government of Canada. Canadian Climate Normals 1981–2010 Station Data. Available online: https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnProv&lstProvince=QC&txtCentralLatMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=5686&dispBack=0 (accessed on 7 February 2021).
- Bouchard, M.B.; Pothier, D.P.; Gauthier, S.G. Fire Return Intervals and Tree Species Succession in the North Shore Region of Eastern Quebec. Can. J. For. Res. 2008. [Google Scholar] [CrossRef]
- Bouchard, M.B.; Pothier, D.P. Spatiotemporal Variability in Tree and Stand Mortality Caused by Spruce Budworm Outbreaks in Eastern Quebec. Can. J. For. Res. 2010. [Google Scholar] [CrossRef]
- Waldron, K.; Thiffault, N.; Bujold, F.; Ruel, J.-C.; Lussier, J.-M.; Boucher, D. Ecological Issues Related to Second-Growth Boreal Forest Management in Eastern Quebec, Canada: Expert Perspectives from a Delphi Process. For. Ecol. Manag. 2020, 470–471, 118214. [Google Scholar] [CrossRef]
- Bouchard, M.; Pothier, D. Long-Term Influence of Fire and Harvesting on Boreal Forest Age Structure and Forest Composition in Eastern Québec. For. Ecol. Manag. 2011, 261, 811–820. [Google Scholar] [CrossRef]
- Boucher, D.; De Grandpré, L.; Kneeshaw, D.; St-Onge, B.; Ruel, J.-C.; Waldron, K.; Lussier, J.-M. Effects of 80 Years of Forest Management on Landscape Structure and Pattern in the Eastern Canadian Boreal Forest. Landsc. Ecol. 2015, 30, 1913–1929. [Google Scholar] [CrossRef]
- Nealis, V.G.; Régnière, J. Insect-Host Relationships Influencing Disturbance by the Spruce Budworm in a Boreal Mixedwood Forest. Can. J. For. Res. 2004. [Google Scholar] [CrossRef] [Green Version]
- Venier, L.A.; Thompson, I.D.; Fleming, R.; Malcolm, J.; Aubin, I.; Trofymow, J.A.; Langor, D.; Sturrock, R.; Patry, C.; Outerbridge, R.O.; et al. Effects of Natural Resource Development on the Terrestrial Biodiversity of Canadian Boreal Forests. Environ. Rev. 2014. [Google Scholar] [CrossRef]
- Drever, C.R.; Hutchison, C.; Drever, M.C.; Fortin, D.; Johnson, C.A.; Wiersma, Y.F. Conservation through Co-Occurrence: Woodland Caribou as a Focal Species for Boreal Biodiversity. Biol. Conserv. 2019, 232, 238–252. [Google Scholar] [CrossRef]
- Courbin, N.; Fortin, D.; Dussault, C.; Courtois, R. Landscape Management for Woodland Caribou: The Protection of Forest Blocks Influences Wolf-Caribou Co-Occurrence. Landsc. Ecol. 2009, 24, 1375. [Google Scholar] [CrossRef]
- Whittington, J.; Hebblewhite, M.; DeCesare, N.J.; Neufeld, L.; Bradley, M.; Wilmshurst, J.; Musiani, M. Caribou Encounters with Wolves Increase near Roads and Trails: A Time-to-Event Approach. J. Appl. Ecol. 2011, 48, 1535–1542. [Google Scholar] [CrossRef]
- Brodeur, V.B.; Ouellet, J.-P.O.-P.; Courtois, R.C.; Fortin, D.F. Habitat Selection by Black Bears in an Intensively Logged Boreal Forest. Can. J. Zool. 2008. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Maxwell, J.; Kneeshaw, D.; Pederson, N.; Duchesne, L.; Logan, T.; Houle, D.; Arseneault, D.; Beier, C.M.; Bishop, D.A.; et al. Drought Timing and Local Climate Determine the Sensitivity of Eastern Temperate Forests to Drought. Glob. Chang. Biol. 2018, 24, 2339–2351. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Régnière, J.; St-Amant, R.; Duval, P. Predicting Insect Distributions under Climate Change from Physiological Responses: Spruce Budworm as an Example. Biol. Invasions 2012, 14, 1571–1586. [Google Scholar] [CrossRef]
- Royer-Tardif, S.; Boisvert-Marsh, L.; Godbout, J.; Isabel, N.; Aubin, I. Finding Common Ground: Toward Comparable Indicators of Adaptive Capacity of Tree Species to a Changing Climate. Ecol. Evol. under review.
- Stralberg, D.; Arseneault, D.; Baltzer, J.L.; Barber, Q.E.; Bayne, E.M.; Boulanger, Y.; Brown, C.D.; Cooke, H.A.; Devito, K.; Edwards, J.; et al. Climate-Change Refugia in Boreal North America: What, Where, and for How Long? Front. Ecol. Environ. 2020, 18, 261–270. [Google Scholar] [CrossRef]
- Skatter, H.G.; Charlebois, M.L.; Eftestøl, S.; Tsegaye, D.; Colman, J.E.; Kansas, J.L.; Flydal, K.; Balicki, B. Living in a Burned Landscape: Woodland Caribou (Rangifer Tarandus Caribou) Use of Postfire Residual Patches for Calving in a High Fire—Low Anthropogenic Boreal Shield Ecozone. Can. J. Zool. 2017. [Google Scholar] [CrossRef]
- Prober, S.M.; Doerr, V.A.J.; Broadhurst, L.M.; Williams, K.J.; Dickson, F. Shifting the Conservation Paradigm: A Synthesis of Options for Renovating Nature under Climate Change. Ecol. Monogr. 2019, 89, e01333. [Google Scholar] [CrossRef]
- Thiffault, N.; Titus, B.D.; English, B. Twenty-Five Years Post-Treatment Conifer Responses to Silviculture on a Kalmia-Dominated Site in Eastern Canada. For. Chron. 2017. [Google Scholar] [CrossRef] [Green Version]
- Wotherspoon, A.; Thiffault, N.; Bradley, R. Resource Availability and Physiological Response of Black Spruce to Scarification in Two Climatic Regions of Québec (Canada). Silva Fenn. 2020, 54. [Google Scholar] [CrossRef]
- Thiffault, N.; Jobidon, R. How to Shift Unproductive Kalmia Angustifolia—Rhododendron Groenlandicum Heath to Productive Conifer Plantation. Can. J. For. Res. 2006. [Google Scholar] [CrossRef]
- Beaulieu, J. Programme et Stratégie d’Amélioration Génétique de l’Ėpinette Blanche Au Québec; Ressources Naturelles Canada, Service Canadien des Forêts, Centre de Foresterie des Laurentides: Sainte-Foy, QC, Canada, 1996; p. 26. [Google Scholar]
- Desponts, M.; Numainville, G. L’Amélioration Génétique de l’Ėpinette Noire au Québec: Bilan et Perspectives; Gouvernement du Québec, Direction de la Recherche Forestière: Sainte-Foy, QC, Canada, 2013; ISBN 978-2-550-66801-5. [Google Scholar]
- Perron, M. Larch Tree Improvement in Quebec by MRNF. In Integrated Research Activities for Supply of Improved Larch to Tree Planting: Tree Improvement, Floral Biology and Nursery Production, Proceedings of LARIX: International Symposium of the IUFRO Working Group S2.02.07, Saint-Michel-des-Saints and Quebec City, QC, Canada, 16–21 September 2007; Bélanger, P., Perron, M., Périnet, P., Desponts, M., Eds.; Ministère des Ressources Naturelles et de la Faune: Québec, QC, Canada, 2007. [Google Scholar]
- Rainville, A.; Desponts, M.; Beaudoin, R.; Périnet, P. L’Amélioration des Arbres au Québec: Un Outil de Performance Industrielle et Environnementale; Direction de la Recherche Forestière: Sainte-Foy, QC, Canada, 2003; p. 8. [Google Scholar]
- Chamberland, V.; Robichaud, F.; Perron, M.; Gélinas, N.; Bousquet, J.; Beaulieu, J. Conventional versus Genomic Selection for White Spruce Improvement: A Comparison of Costs and Benefits of Plantations on Quebec Public Lands. Tree Genet. Genomes 2020, 16, 17. [Google Scholar] [CrossRef] [Green Version]
- Man, R.; Lieffers, V.J. Are Mixtures of Aspen and White Spruce More Productive than Single Species Stands? For. Chron. 1999. [Google Scholar] [CrossRef]
- Kabzems, R.; Nemec, A.L.; Farnden, C. Growing Trembling Aspen and White Spruce Intimate Mixtures: Early Results (13–17 Years) and Future Projections. J. Ecosyst. Manag. 2007, 8, 1–14. [Google Scholar]
- Légaré, S.; Paré, D.; Bergeron, Y. The Responses of Black Spruce Growth to an Increased Proportion of Aspen in Mixed Stands. Can. J. For. Res. 2004. [Google Scholar] [CrossRef]
- Royer-Tardif, S.; Paquette, A.; Messier, C.; Bournival, P.; Rivest, D. Fast-Growing Hybrids Do Not Decrease Understorey Plant Diversity Compared to Naturally Regenerated Forests and Native Plantations. Biodivers. Conserv. 2018, 27, 607–631. [Google Scholar] [CrossRef]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Hybrid Poplar Yields in Québec: Implications for a Sustainable Forest Zoning Management System. For. Chron. 2012, 88, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Montoro Girona, M.; Morin, H.; Lussier, J.-M.; Walsh, D. Radial Growth Response of Black Spruce Stands Ten Years after Experimental Shelterwoods and Seed-Tree Cuttings in Boreal Forest. Forests 2016, 7, 240. [Google Scholar] [CrossRef] [Green Version]
- Montoro Girona, M.; Lussier, J.-M.; Morin, H.; Thiffault, N. Conifer Regeneration After Experimental Shelterwood and Seed-Tree Treatments in Boreal Forests: Finding Silvicultural Alternatives. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Moroni, M.T.M.T.; Thiffault, N.T.; Titus, B.D.T.D.; Mante, C.M.; Makeschin, F.M. Controlling Kalmia and Reestablishing Conifer Dominance Enhances Soil Fertility Indicators in Central Newfoundland, Canada. Can. J. For. Res. 2009, 39, 1270–1279. [Google Scholar] [CrossRef]
- Moreau, G.; Caspersen, J.; D’Orangeville, L.; Sánchez-Pinillos, M.; Achim, A.; Thiffault, N. Opportunities and Limitations of Thinning to Adapt Forests to Global Change. Curr. For. Rep. under review.
- Schneider, R.; Franceschini, T.; Duchateau, E.; Bérubé-Deschênes, A.; Dupont-Leduc, L.; Proudfoot, S.; Power, H.; de Coligny, F. Influencing Plantation Stand Structure through Close-to-Nature Silviculture. Eur. J. For. Res. 2021. [Google Scholar] [CrossRef]
- Boisvert-Marsh, L. Patterns and Processes Affecting Northward Migration of Tree Species in a Changing Climate. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2020. [Google Scholar]
- Tittler, R.; Filotas, É.; Kroese, J.; Messier, C. Maximizing Conservation and Production with Intensive Forest Management: It’s All About Location. Environ. Manag. 2015, 56, 1104–1117. [Google Scholar] [CrossRef]
- Peterson St-Laurent, G.; Hagerman, S.; Kozak, R. What Risks Matter? Public Views about Assisted Migration and Other Climate-Adaptive Reforestation Strategies. Clim. Chang. 2018, 151, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Barrette, M.; Leblanc, M.; Thiffault, N.; Paquette, A.; Lavoie, L.; Bélanger, L.; Bujold, F.; Côté, L.; Lamoureux, J.; Schneider, R.; et al. Issues and Solutions for Intensive Plantation Silviculture in a Context of Ecosystem Management. For. Chron. 2014, 90, 748–762. [Google Scholar] [CrossRef] [Green Version]
- Park, A.; Wilson, E.R. Beautiful Plantations: Can Intensive Silviculture Help Canada to Fulfill Ecological and Timber Production Objectives? For. Chron. 2007, 83, 825–839. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Forest Products Facts and Figures 2018; FAO: Rome, Italy, 2019; p. 18. [Google Scholar]
- Williamson, T.B.; Johnston, M.H.; Nelson, H.W.; Edwards, J.E. Adapting to Climate Change in Canadian Forest Management: Past, Present and Future. For. Chron. 2019, 95, 76–90. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
Objective | Forest Vulnerability | Option | Definition | Example | |
---|---|---|---|---|---|
A | Natural adaptation | Lower | Ecological reserves | Retain valuable forest features and biodiversity along with their associated cultural values | Biodiversity hotspots in southeastern Canada [65] |
B | Natural adaptation | Intermediate | Self-adapted forests | Expose local tree populations to climate change and allow natural adaptation | Let-it burn policy in the Sierra Nevada forests to restore fire resilience [7] |
C | Natural adaptation | Higher | Self-organized alternative states | Allow the natural transition of ecosystems to evaluate the extent of natural adaptive capacity | Northern protected areas acting as refuges while experiencing large ecological changes [66] |
D | Multi-functional forestry | Lower | New forestry 1 | Reconcile wood production and natural processes based on our best-knowledge of ecosystem functioning | Close-to-nature silviculture in Europe that seeks to favor natural processes guiding ecosystem development [36,58] |
E | Multi-functional forestry | Intermediate | Robust species mixtures 2 | Ensure forest regeneration and productivity beyond historical ecological boundaries | Cutfoot Experimental Forest resilience trial (ASCC project) [11] |
F | Multi-functional forestry | Higher | Supervised transition to alternative states | Facilitate transition to new state to retain some of the services provided by forest ecosystems | Converting Pinus ponderosa forests to Juniperus dominated woodlands to avoid transition to grasslands [67] |
G | Wood production | Lower | High-yield plantations | Maximize productivity with buffering and resistance measures to shorten stand rotation and increase incomes | Pinus radiata plantations in New Zealand [60] |
H | Wood production | Intermediate | Novel plantations | Sustain wood production by replacing sensitive species with more tolerant ones or promoting species mixtures as an insurance policy | Replacing drought sensitive Pinus radiata with Pinus pinaster in Western Australia plantations [15] Mixed-species plantations [68] |
I | Wood production | Higher | Productivity in alternative states | Develop new forest products to maintain productivity and sustain some forest ecosystem services | Mixed Populus alba–Robinia pseudoacacia coppice in central Spain [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Royer-Tardif, S.; Bauhus, J.; Doyon, F.; Nolet, P.; Thiffault, N.; Aubin, I. Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options. Forests 2021, 12, 273. https://doi.org/10.3390/f12030273
Royer-Tardif S, Bauhus J, Doyon F, Nolet P, Thiffault N, Aubin I. Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options. Forests. 2021; 12(3):273. https://doi.org/10.3390/f12030273
Chicago/Turabian StyleRoyer-Tardif, Samuel, Jürgen Bauhus, Frédérik Doyon, Philippe Nolet, Nelson Thiffault, and Isabelle Aubin. 2021. "Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options" Forests 12, no. 3: 273. https://doi.org/10.3390/f12030273
APA StyleRoyer-Tardif, S., Bauhus, J., Doyon, F., Nolet, P., Thiffault, N., & Aubin, I. (2021). Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options. Forests, 12(3), 273. https://doi.org/10.3390/f12030273