Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.1.1. Induction of Organogenesis
2.1.2. Attempts to Induce Embryogenic Tissue
2.2. Organogenesis
2.2.1. Axillary Shoot Induction, Growth and Elongation
2.2.2. Root Induction
2.2.3. Data Collection and Statistical Analysis
2.3. Attempts to Induce Embryogenic Tissue
2.3.1. Apical Shoot Buds as Initial Explants
2.3.2. In Vitro Axillary Shoots as Initial Explants
3. Results
3.1. Organogenic Process
3.2. Attempts to Induce Embryogenic Tissue
4. Discussion
4.1. Organogenic Process
4.2. Attempts to Induce Embryogenic Tissue
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Von Arnold, S.; Clapham, D.; Abrahamsson, M. Embryology in conifers. In Advances in Botanical Research, 1st ed.; Cánovas, F.N., Ed.; Elsevier: Cambridge, MA, USA, 2019; Volume 89, pp. 157–184. [Google Scholar]
- Klimaszewska, K.; Trontin, J.-F.; Becwar, M.R.; Devillard, C.; Park, Y.-S.; Lelu-Walter, M.-A. Recent progress in somatic embryogenesis of four Pinus spp. Tree For. Sci. Biotechnol. 2007, 1, 11–25. [Google Scholar]
- Ne’eman, G.; Goubitz, S.; Nathan, R. Reproductive traits of Pinus halepensis in the light of fire—A critical review. Plant Ecol. 2004, 171, 69–79. [Google Scholar] [CrossRef]
- Klein, T.; Cohen, S.; Yakir, D. Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol. 2011, 31, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Vennetier, M.; Ripert, C.; Rathgeber, C.; Bellot, J.; Maestre, F.T.; Chirino, E.; Hernández, N.; De Urbina, J.O.; Botella, L.; Santamaría, O.; et al. Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Fungal Divers. 2010, 41, 9–18. [Google Scholar]
- Botella, L.; Santamaría, O.; Diez, J.J. Fungi associated with the decline of Pinus halepensis in Spain. Fungal Divers. 2010, 40, 1–11. [Google Scholar] [CrossRef]
- Sugiyama, M. Historical review of research on plant cell dedifferentiation. J. Plant Res. 2015, 128, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Vasil, I.K. A history of plant biotechnology: From the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep. 2008, 27, 1423–1440. [Google Scholar] [CrossRef] [PubMed]
- Ramage, C.M.; Williams, R.R. Mineral nutrition and plant morphogenesis. Vitr. Cell. Dev. Biol. Plant 2002, 38, 116–124. [Google Scholar] [CrossRef]
- Zhang, S.; Lemaux, P.G. Molecular analysis of in vitro shoot organogenesis. CRC Crit. Rev. Plant Sci. 2004, 23, 325–335. [Google Scholar] [CrossRef]
- Bonga, J.M.; Klimaszewska, K.K.; von Aderkas, P. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell. Tissue Organ Cult. 2010, 100, 241–254. [Google Scholar] [CrossRef]
- Díaz-Sala, C. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: The effect of the juvenile-adult transition. Front. Plant Sci. 2014, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonga, J.M. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees Struct. Funct. 2017, 31, 781–789. [Google Scholar] [CrossRef]
- de Almeida, M.; de Almeida, C.V.; Graner, E.M.; Brondani, G.E.; de Abreu-Tarazi, M.F. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: A histological study. Plant Cell Rep. 2012, 31, 1495–1515. [Google Scholar] [CrossRef]
- Skoog, F.; Miller, C.O. Chemical regulation of growth and organ formation in plant tissues cultured. Symp. Soc. Exp. Biol. 1957, 11, 118–131. [Google Scholar]
- Matsubayashi, Y.; Ogawa, M.; Kihara, H.; Niwa, M.; Sakagami, Y. Disruption and overexpression of Arabidopsis Phytosulfokine receptor gene affects cellular longevity and potential for growth. Plant Physiol. 2006, 142, 45–53. [Google Scholar] [CrossRef] [Green Version]
- De Diego, N.; Montalbán, I.A.; Fernandez De Larrinoa, E.; Moncaleán, P. In vitro regeneration of Pinus pinaster adult trees. Can. J. For. Res. 2008, 38, 2607–2615. [Google Scholar] [CrossRef]
- De Diego, N.; Montalbán, I.A.; Moncaleán, P. In vitro regeneration of adult Pinus sylvestris L. trees. S. Afr. J. Bot. 2010, 76, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Montalbán, I.A.; De Diego, N.; Moncaleán, P. Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequent ex vitro performance in Pinus radiata. Forestry 2011, 84, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Cortizo, M.; de Diego, N.; Moncaleán, P.; Ordás, R.J. Micropropagation of adult Stone Pine (Pinus pinea L.). Trees Struct. Funct. 2009, 23, 835–842. [Google Scholar] [CrossRef]
- Becwar, M.R.; Nagmani, R.; Wann, S.R. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. For. Res. 1990, 20, 810–817. [Google Scholar] [CrossRef]
- Carneros, E.; Celestino, C.; Klimaszewska, K.; Park, Y.S.; Toribio, M.; Bonga, J.M. Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell. Tissue Organ Cult. 2009, 98, 165–178. [Google Scholar] [CrossRef]
- Castander-Olarieta, A.; Moncaleán, P.; Montalbán, I.A. Pinus canariensis plant regeneration through somatic embryogenesis. For. Syst. 2020, 29, 61–66. [Google Scholar] [CrossRef]
- Lambardi, M.; Sharma, K.K.; Thorpe, T.A. Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). Vitr. Cell. Dev. Biol. Plant 1993, 29, 189–199. [Google Scholar] [CrossRef]
- Montalbán, I.A.; Setién-Olarra, A.; Hargreaves, C.L.; Moncaleán, P. Somatic embryogenesis in Pinus halepensis Mill.: An important ecological species from the Mediterranean forest. Trees 2013, 27, 1339–1351. [Google Scholar] [CrossRef]
- Gupta, P.K.; Durzan, D.J. Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce). Vitr. Cell. Dev. Biol. 1986, 22, 685–688. [Google Scholar] [CrossRef]
- Walter, C.; Find, J.I.; Grace, L.J. Somatic embryogenesis and genetic transformation in Pinus radiata. In Protocol for Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 11–24. [Google Scholar]
- Park, S.Y.; Klimaszewska, K.; Park, J.Y.; Mansfield, S.D. Lodgepole pine: The first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol. 2010, 30, 1469–1478. [Google Scholar] [CrossRef]
- Montalbán, I.A.; De Diego, N.; Moncaleán, P. Bottlenecks in Pinus radiata somatic embryogenesis: Improving maturation and germination. Trees 2010, 24, 1061–1071. [Google Scholar] [CrossRef]
- Wendling, I.; Trueman, S.J.; Xavier, A. Maturation and related aspects in clonal forestry-part II: Reinvigoration, rejuvenation and juvenility maintenance. New For. 2014, 45, 473–486. [Google Scholar] [CrossRef]
- Sarmast, M.K. In vitro propagation of conifers using mature shoots. J. For. Res. 2018, 29, 565–574. [Google Scholar] [CrossRef]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef] [Green Version]
- Bello-Bello, J.J.; Chavez-Santoscoy, R.A.; Lecona-Guzmán, C.A.; Bogdanchikova, N.; Salinas-Ruíz, J.; Gómez-Merino, F.C.; Pestryakov, A. Hormetic response by silver nanoparticles on in vitro multiplication of sugarcane (Saccharum spp. Cv. Mex 69-290) using a temporary immersion system. Dose-Response 2017, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalia, R.K.; Arya, S.; Kalia, S.; Arya, I.D. Plantlet regeneration from fascicular buds of seedling shoot apices of Pinus roxburghii Sarg. Biol. Plant. 2007, 51, 653–659. [Google Scholar] [CrossRef]
- Stojičić, D.; Budimir, S.; Ćulafić, L. Micropropagation of Pinus heldreichii. Plant Cell. Tissue Organ Cult. 1999, 59, 147–150. [Google Scholar] [CrossRef]
- Moncaleán, P.; Alonso, P.; Centeno, M.L.; Cortizo, M.; Rodríguez, A.; Fernández, B.; Ordás, R.J. Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiol. 2005, 25, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, S.; Sousa, D.; Pereira, V.T.; Correia, S.; Marum, L.; Santos, C.; Dias, M.C. Efficient protocol for in vitro mass micropropagation of slash pine. Vitr. Cell. Dev. Biol. Plant 2018, 54, 175–183. [Google Scholar] [CrossRef]
- Pan, M.J.; Van Staden, J. The use of charcoal in in vitro culture—A review. Plant Growth Regul. 1998, 26, 155–163. [Google Scholar] [CrossRef]
- Von Aderkas, P.; Bonga, J.M. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol. 2000, 20, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Montalbán, I.A.; Novák, O.; Rolčik, J.; Strnad, M.; Moncaleán, P. Endogenous cytokinin and auxin profiles during in vitro organogenesis from vegetative buds of Pinus radiata adult trees. Physiol. Plant. 2013, 148, 214–231. [Google Scholar] [CrossRef]
- Ragonezi, C.; Klimaszewska, K.; Castro, M.R.; Lima, M.; de Oliveira, P.; Zavattieri, M.A. Adventitious rooting of conifers: Influence of physical and chemical factors. Trees Struct. Funct. 2010, 24, 975–992. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, J.M.; Majada, J.; Ordás, R.J. An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 2009, 82, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Riov, J.; Foxa, H.; Attiasa, R.; Shklar, G.; Farkash-Haim, L.; Sitbon, R.; Moshe, Y.; Abu-Abied, M.; Sadot, E.; David-Schwartz, R. Improved method for vegetative propagation of mature Pinus halepensis and its hybrids by cuttings. Isr. J. Plant Sci. 2020, 67, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Sala, C. Molecular dissection of the regenerative capacity of forest tree species: Special focus on conifers. Front. Plant Sci. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimaszewska, K.; Overton, C.; Stewart, D.; Rutledge, R.G. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 2011, 233, 635–647. [Google Scholar] [CrossRef]
- Corredoira, E.; Merkle, S.A.; Martínez, M.T.; Toribio, M.; Canhoto, J.M.; Correia, S.I.; Ballester, A.; Vieitez, A.M. Non-zygotic embryogenesis in hardwood species. CRC Crit. Rev. Plant Sci. 2019, 38, 29–97. [Google Scholar] [CrossRef]
- Pereira, C.; Montalbán, I.A.; García-Mendiguren, O.; Goicoa, T.; Ugarte, M.D.; Correia, S.; Canhoto, J.M.; Moncaleán, P. Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process. J. For. Res. 2016, 21, 143–150. [Google Scholar] [CrossRef]
- Stasolla, C.; Thorpe, T. Tissue culture: Historical perspectives and applications. Appl. Plant Biotechnol. 2011, 15–305. [Google Scholar]
- Salaj, T.; Klubicová, K.; Matusova, R.; Salaj, J. Somatic embryogenesis in selected conifer trees Pinus nigra Arn. and abies hybrids. Front. Plant Sci. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Klubicová, K.; Uvácková, L.; Danchenko, M.; Nemecek, P.; Skultéty, L.; Salaj, J.; Salaj, T. Insights into the early stage of Pinus nigra Arn. somatic embryogenesis using discovery proteomics. J. Proteom. 2017, 169, 99–111. [Google Scholar] [CrossRef]
- Tavares, J.J.D.M. In Vitro Morphogenesis Assays in Pinus halepensis Mill. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2019. [Google Scholar]
- Igasaki, T.; Akashi, N.; Ujino-Ihara, T.; Matsubayashi, Y.; Sakagami, Y.; Shinohara, K. Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol. 2003, 44, 1412–1416. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Eun, C.H.; Hanai, H.; Matsubayashi, Y.; Sakagami, Y.; Kamada, H. Phytosulphokine-α, a peptidyl plant growth factor, stimulates somatic embryogenesis in carrot. J. Exp. Bot. 1999, 50, 1123–1128. [Google Scholar]
- Yang, F.; Xia, X.R.; Ke, X.; Ye, J.; Zhu, L. Somatic embryogenesis in slash pine (Pinus elliottii Engelm): Improving initiation of embryogenic tissues and maturation of somatic embryos. Plant Cell. Tissue Organ Cult. 2020, 143, 159–171. [Google Scholar] [CrossRef]
Medium | PGRs (µM) | AC (g L−1) | Others (g L−1) | Agar (g L−1) | pH (1) | [28] EDM Amino Acid Mixture (2) | Phytosulfokine (nM) (2) |
---|---|---|---|---|---|---|---|
O1 | BA (11,22,44) | - | Sucrose (30) | Difco® granulated agar (9) | 5.8 | - | - |
O2 | - | (2) | Sucrose (30) | Difco® granulated agar (9.5) | 5.8 | - | - |
O3 | IBA (7) | - | Sucrose (30) | Difco® granulated agar (9.5) | 5.8 | - | - |
S1 [29] | - | (3) | Maltose (32) | Gelrite® (2) | 5.7 | - | - |
S2 | BA (9) 2,4-D (20) NAA (25) (2) | - | Maltose (32) | Gelrite® (1.5) | 5.7 | yes | (50) |
S3 | - | - | Sucrose (30) | - | 5.7 | - | - |
S4 | BA (9) 2,4-D (20) NAA (25) (2) | - | Maltose (32) | Gelrite® (2.5) | 5.7 | yes | (50) |
S5 | BA (9) 2,4-D (20) NAA (25) (2) | Maltose (32) | Gelrite® (2.5) | 5.7 | yes | (100) | |
S6 | - | (10) | Sucrose (60) | - | 5.7 | - | - |
S7 | BA (9) 2,4-D (20) NAA (25) (2) | - | Maltose (32) PVP (0.2) | Gelrite® (2.5) | 5.7 | yes | (100) |
S8 | ABA (80) (2) | Sucrose (68) Casein hydrolysate (1) Glutamine (0.5) (2) | Gelrite® (10) | 5.7 | yes | - | |
S9 | ABA (120) (2) | Sucrose (68) Casein hydrolysate (1) Glutamine (0.5) (2) | Gelrite® (12) | 5.7 | yes | - | |
S10 | BA (9) 2,4-D (20) NAA (25) (2) | - | Maltose (32) | Gelrite® (1.5) | 5.7 | yes | (200) |
S11 | 2,4-D (9) Kinetin (2.7) | Sucrose (30) | Gelrite® (3.5) | 5.7 | yes | - |
Source | |||
---|---|---|---|
t-Test | df | t | p Value |
EFS | 36 | 1.28 | n.s. 1 |
NS/E | 34 | 2.12 | 0.0411 |
Kruskal-Wallis | df | X2 Test | pValue |
Ex vitro Rooting | 4 | 2.613 | n.s. |
Treatment | EFS (%) | NS/E |
---|---|---|
22 µM L−1 BA | 21.47 ± 4.70 a | 2.87 ± 0.51 b |
44 µM L −1 BA | 30.90 ± 5.58 a | 5.79 ± 1.2 a |
Genotype | EFS (%) | NS/E | ||
---|---|---|---|---|
22 µM | 44 µM | 22 µM | 44 µM | |
H32 | 25 ± 0 | 33.3 ± 0 | 4.5 ± 0 | 8 ± 0 |
H8 | 0 1 | 11.1 ± 0 | 0 1 | 22 ± 0 |
17.3 | 41.2 ± 10.0 | 59.2 ± 8.3 | 3.85 ± 1.0 | 5.2 ± 1.1 |
17.4 | 14.3 ± 5,4 | 33.3 ± 7.2 | 2.5 ± 0.9 | 3 ± 1.1 |
18.1 | 13.66 ± 3.8 | 29.7 ± 9.8 | 1.7 ± 0.5 | 2.4 ± 0.5 |
P1 | 0 1 | 39.9 ± 16.4 | 0 1 | 9.8 ± 2.2 |
P5 | 14.8 ± 0.4 | 19.54 ± 1.3 | 3 ± 0 | 3.7 ± 0.24 |
P6 | 12.0 ± 4.2 | 11.1 ± 3.93 | 1.67± 0 | 11.33 ± 0 |
P8 | 38.5 ± 0 | 25.0 ± 0 | 6.8 ± 0 | 5.3 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, C.; Montalbán, I.A.; Pedrosa, A.; Tavares, J.; Pestryakov, A.; Bogdanchikova, N.; Canhoto, J.; Moncaleán, P. Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds. Forests 2021, 12, 363. https://doi.org/10.3390/f12030363
Pereira C, Montalbán IA, Pedrosa A, Tavares J, Pestryakov A, Bogdanchikova N, Canhoto J, Moncaleán P. Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds. Forests. 2021; 12(3):363. https://doi.org/10.3390/f12030363
Chicago/Turabian StylePereira, Cátia, Itziar A. Montalbán, Ana Pedrosa, Jéssica Tavares, Alexey Pestryakov, Nina Bogdanchikova, Jorge Canhoto, and Paloma Moncaleán. 2021. "Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds" Forests 12, no. 3: 363. https://doi.org/10.3390/f12030363
APA StylePereira, C., Montalbán, I. A., Pedrosa, A., Tavares, J., Pestryakov, A., Bogdanchikova, N., Canhoto, J., & Moncaleán, P. (2021). Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds. Forests, 12(3), 363. https://doi.org/10.3390/f12030363