Using Direct and Indirect Methods to Assess Changes in Riparian Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Habitat Properties Determined Using Direct and Indirect Methods
3.2. The Influence of the Studied Environmental Variables on Results of Ordination Analyses
3.3. Determining the Vegetation-Habitat Dependency
4. Discussion
4.1. Habitat Properties Estimated Using Direct and Indirect Methods.
4.2. Validity of the Studied Variables and the Results of Statistical Analyses
4.3. Implications for Management
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matuszkiewicz, J.M. Zespoły Leśne Polski (Forest Associations of Poland); Wydawnictwo Naukowe PWN: Warsaw, Poland, 2005; p. 357. (In Polish) [Google Scholar]
- Nilsson, C.; Svedmark, M. Basic principles and ecological consequences of changing water regimes: Riparian plant communities. Environ. Manag. 2002, 30, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Doulatyari, B.; Basso, S.; Schirmer, M.; Botter, G. River flow regimes and vegetation dynamics along a river transect. Adv. Water Resour. 2014, 73, 30–43. [Google Scholar] [CrossRef]
- Kawalko, D.; Jezierski, P.; Kabala, C. Morphology and physicochemical properties of alluvial soils in riparian forests after river regulation. Forests 2021, 12, 329. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H.; McClain, M.E. Riparia: Ecology, Conservation and Management of Streamside Communities; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; p. 448. [Google Scholar]
- Lovett, S.; Price, P. (Eds.) Principles for Riparian Lands Management; Land and Water Australia: Canberra, Australia, 2007; p. 174.
- Décamps, H.A.; Fortune, M.; Gazelle, F.; Pautou, G. Historical influence of man on the riparian dynamics of a fluvial landscape. Landsc. Ecol. 1998, 1, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Shafroth, P.B.; Stromberg, J.C.; Patten, D.T. Riparian vegetation response to altered disturbance and stress regimes. Ecol. Appl. 2002, 12, 107–123. [Google Scholar] [CrossRef]
- Quinby, P.A. Influence of logging on riparian forest understory in the lower Spanish forest of central Ontario. Anc. For. Explor. Res. 1997, 14, 1–6. [Google Scholar]
- Bahuguna, D.; Mitchell, S.J.; Nishio, G.R. Post-harvest windthrow and recruitment of large woody debris in riparian buffers on Vancouver Island. Eur. J. For. Res. 2012, 131, 249–260. [Google Scholar] [CrossRef]
- Richardson, J.S.; Naiman, R.J.; Bisson, P.A. How did fixed-width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices? Freshw. Sci. 2012, 31, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Broadmeadow, S.; Nisbet, T.R. The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrol. Earth Syst. Sci. 2004, 8, 286–305. [Google Scholar] [CrossRef]
- Richardson, J.S.; Naiman, R.J.; Swanson, F.J.; Hibbs, D.E. Riparian communities associated with Pacific Northwest headwater streams: Assemblages, processes, and uniqueness. J. Am. Water Resour. Assoc. 2005, 41, 935–947. [Google Scholar] [CrossRef]
- Puettmann, K.J.; Ammer, C. Trends in North American and European regeneration research under the ecosystem management paradigm. Eur. J. Forest Res. 2007, 126, 1–9. [Google Scholar] [CrossRef]
- Ellenberg, H. Zeigerwerte der gefäßpflanzen (ohne Rubus), 2nd ed. Scr. Geobot. 1992, 18, 9–166. (In German) [Google Scholar]
- Diekmann, M. Species indicator values as important tool in applied plant ecology—Review. Basic Appl. Ecol. 2003, 4, 493–506. [Google Scholar] [CrossRef]
- Dzwonko, Z. Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J. Appl. Ecol. 2001, 38, 942–951. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Paulissen, D. Zeigerwerte von pflanzen in mitteleuropa, 2nd ed. Scr. Geobot. 1992, 18, 1–248. (In German) [Google Scholar]
- Diekmann, M. Use and improvement of Ellenberg’s indicator values in deciduous forests of the Boreo-nemoral zone in Sweden. Ecography 1995, 18, 178–189. [Google Scholar] [CrossRef]
- Ertsen, A.C.D.; Alkemade, J.R.M.; Wassen, M.J. Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecol. 1998, 135, 113–124. [Google Scholar] [CrossRef]
- Schaffers, A.P.; Sýkora, K.V. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: A comparison with field measurements. J. Veg. Sci. 2000, 11, 225–244. [Google Scholar] [CrossRef]
- Zelený, D.; Schaffers, A.P. Too good to be true: Pitfalls of using mean Ellenberg indicator values in vegetation analyses. J. Veg. Sci. 2012, 23, 419–431. [Google Scholar] [CrossRef]
- Wildi, O. Why mean indicator values are not biased. J. Veg. Sci. 2016, 27, 40–49. [Google Scholar] [CrossRef]
- Kabała, C. (Ed.) Soils of Lower Silesia: Origins, Diversity and Protection; Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environment Protection: Wroclaw, Poland, 2015; p. 255. [Google Scholar]
- Kawałko, D.; Halarewicz, A.; Pruchniewicz, D. Vegetation condition in the Odra river riparian forests in the area of Wołów. Sylwan 2015, 15, 220–226. [Google Scholar]
- Deiller, A.F.; Walter, J.M.; Trémolieres, M. Effects of flood interruption on species richness, diversity and floristic composition of woody regeneration in the upper Rhine alluvial hardwood forest. Regul. Rivers: Res. Mgmt. 2001, 17, 393–405. [Google Scholar] [CrossRef]
- Sobik, M. Klimat. In Przyroda Dolnego Śląska (The Nature of Lower Silesia); Fabiszewski, J., Ed.; PAN: Wrocław, Poland, 2005; pp. 39–57. (In Polish) [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea; Cambridge University Press: Cambridge, UK, 1964–1980. [Google Scholar]
- Pora, E.; Kaszubkiewicz, J.; Kawałko, D. Selected methodological aspects of determination of the water desorption curves of superabsorbents. Environ. Prot. Eng. 2015, 41, 37–48. [Google Scholar]
- TIBCO Software Inc. Statistica. (Data Analysis Software System), Version 13. 2017. Available online: http://statistica.io (accessed on 15 April 2021).
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012; p. 496. [Google Scholar]
- Szymura, T.H.; Szymura, M.; Macioł, A. Bioindication with Ellenberg’s indicator values: A comparison with measured parameters in central European oak forests. Ecol. Indic. 2014, 46, 495–503. [Google Scholar] [CrossRef]
- Böcker, R.; Kowarik, I.; Bornkamm, R. Untersuchungen zur anwendung der zeigerwerte nach Ellenberg. Verh. Ges. Oekol. 1983, 11, 35–56. (In German) [Google Scholar]
- Clausman, P.H.M.A.; Van Wijngaarden, W. Verspreiding en Ecologie van Wilde Planten in Zuid-Holland. Deel a Waarderingsparameters; Rapport Provincial Planologische Dienst Zuid-Holland: The Hague, The Netherlands, 1984; p. 127. (In Dutch) [Google Scholar]
- Kowarik, I.; Seidling, W. Zeigerwertberechnungen nach Ellenberg: Zu problemen und einschränkungen einer sinnvollen methode. Landsch. Stadt. 1989, 21, 132–143. (In German) [Google Scholar]
- Käfer, J.; Witte, J.P.M. Cover-weighted averaging of indicator values in vegetation analyses. J. Veg. Sci. 2004, 15, 647–652. [Google Scholar] [CrossRef]
- Wamelink, G.W.W.; Joosten, V.; Van Dobben, H.F.; Berendse, F. Validity of Ellenberg indicator values judged from physicochemical field measurements. J. Veg. Sci. 2002, 13, 269–278. [Google Scholar] [CrossRef]
- Wamelink, G.W.; Goedhart, P.W.; Van Dobben, H.F.; Berendse, F. Plant species as predictors of soil pH: Replacing expert judgement with measurements. J. Veg. Sci. 2005, 16, 461–470. [Google Scholar] [CrossRef]
- Schoenholtz, S.H.; Miegroet, H.V.; Burger, J.A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335–356. [Google Scholar] [CrossRef]
- Tölgyesi, C.; Bátori, Z.; Erdős, L. Using statistical tests on relative ecological indicator values to compare vegetation units–Different approaches and weighting methods. Ecol. Indic. 2014, 36, 441–446. [Google Scholar] [CrossRef]
- Økland, R.H. Vegetation ecology: Theory, methods and applications with reference to Scandinavia. Sommerfeltia Suppl. 1990, 1, 1–233. [Google Scholar]
- Cornwell, W.K.; Grubb, P.J. Regional and local patterns in plant species richness with respect to resource availability. Oikos 2003, 100, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Kahmen, A.; Schlumprecht, H.; Audorff, V.; Perner, J.; Buchmann, N.; Weisser, W.W. Prediction of herbage yield in grassland: How well do Ellenberg N-values perform? Appl. Veg. Sci. 2007, 10, 15–24. [Google Scholar] [CrossRef]
- Dierschke, H. Pflanzensoziologie; Eugen Ulmer: Stuttgart, Germany, 1994; p. 683. (In German) [Google Scholar]
- Möller, H. Zur verwendung des medians bei zeigerwertberechnungen nach ellenberg. Tuexenia 1992, 12, 25–28. [Google Scholar]
- Jongman, R.H.G.; Braak, T.C.J.F.; Van Tongeren, O.F.R. Data Analysis in Community and Landscape Ecology; Cambridge University Press: Cambridge, UK, 1995; p. 299. [Google Scholar]
- Kącki, Z.; Stefańska-Krzaczek, E. Phytosociological characteristics of the forest habitats of European Ecological Natura 2000 Network in Olesnica Slaska Forest Inspectorate. Acta Bot. Sil. 2009, 4, 15–42. [Google Scholar]
- Evans, J. Natural Regeneration of Broadleaves; Forestry Commission Bulletin No 78; HMSO: London, UK, 1988; p. 48. [Google Scholar]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsc, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pysek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Kuglerová, L.; Agren, A.; Jansson, R.; Laudon, H. Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. For. Ecol. Manag. 2014, 334, 74–84. [Google Scholar] [CrossRef]
- Lee, P.; Smyth, C.; Boutin, S. Quantitative review of riparian buffer width guidelines from Canada and the United States. J. Environ. Manag. 2004, 70, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Blinn, C.R.; Kilgore, M.A. Riparian management practices—A summary of state guidelines. J. For. 2011, 99, 11–17. [Google Scholar]
Site I | Site II | Site III | |
---|---|---|---|
Moisture | |||
F wEIVs | 2.03 ± 0.20 b | 1.59 ± 0.13 ab | 1.20 ± 0.20 a |
F aEIVs | 4.21 ± 0.13 b | 4.03 ± 0.09 b | 3.35 ± 0.22 a |
FWC | 49.63 ± 0.40 c | 45.51 ± 0.24 b | 32.41 ± 0.41 a |
Soil reaction | |||
R wEIVs | 2.35 ± 0.25 b | 1.67 ± 0.12 ab | 1.32 ± 0.20 a |
R aEIVs | 4.24 ± 0.21 ab | 4.39 ± 0.10 b | 3.47 ± 0.25 a |
pH | 5.37 ± 0.06 b | 5.19 ± 0.07 b | 4.66 ± 0.10 a |
Nitrogen | |||
N wEIVs | 5.08 ± 0.09 b | 5.06 ± 0.09 b | 1.52 ± 0.24 a |
N aEIVs | 5.33 ± 0.08 b | 5.31 ± 0.14 b | 3.71 ± 0.26 a |
Ntot | 0.40 ± 0.03 b | 0.33 ± 0.02 b | 0.25 ± 0.02 a |
F wEIVs | R wEIVs | N wEIVs | F aEIVs | R aEIVs | N aEIVs | N tot | pH | FWC | |
---|---|---|---|---|---|---|---|---|---|
F wEIVs | |||||||||
R wEIVs | 0.783 *** | ||||||||
N wEIVs | 0.476 ** | 0.372 * | |||||||
F aEIVs | 0.713 *** | 0.624 *** | 0.539 ** | ||||||
R aEIVs | 0.622 *** | 0.665 *** | 0.527 ** | 0.663 *** | |||||
N aEIVs | 0.461 ** | 0.388 * | 0.878 *** | 0.61 *** | 0.554 ** | ||||
Ntot | 0.255 | 0.464 ** | 0.447 * | 0.235 | 0.232 | 0.496 ** | |||
pH | 0.378 * | 0.503 ** | 0.519 ** | 0.340 | 0.311 | 0.543 ** | 0.815 *** | ||
FWC | 0.542 ** | 0.553 ** | 0.668 *** | 0.629 *** | 0.368 * | 0.71 ** | 0.590 *** | 0.665 *** |
Explains (%) | Pseudo-F | p | |
---|---|---|---|
N wEIVs | 24.3 | 9 | 0.002 |
R wEIVs | 3.5 | 1.3 | 0.07 |
F wEIVs | 3.9 | 1.5 | 0.026 |
N aEIVs | 19.6 | 6.8 | 0.002 |
F aEIVs | 4.3 | 1.5 | 0.014 |
R aEIVs | 2.9 | 1 | 0.394 |
FWC | 23.2 | 8.4 | 0.002 |
pH | 3 | 1.1 | 0.286 |
N tot | 2.5 | 0.9 | 0.706 |
Standardized Coefficient | Standard Error | t | p | |
---|---|---|---|---|
Intercept | 0.000 | 0.099 | 0.000 | 1.000 |
F wEIVs | 0.093 | 0.246 | 0.378 | 0.709 |
R wEIVs | 0.765 | 0.243 | 3.150 | 0.004 |
N wEIVs | 0.009 | 0.165 | 0.055 | 0.957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halarewicz, A.; Pruchniewicz, D.; Kawałko, D. Using Direct and Indirect Methods to Assess Changes in Riparian Habitats. Forests 2021, 12, 504. https://doi.org/10.3390/f12040504
Halarewicz A, Pruchniewicz D, Kawałko D. Using Direct and Indirect Methods to Assess Changes in Riparian Habitats. Forests. 2021; 12(4):504. https://doi.org/10.3390/f12040504
Chicago/Turabian StyleHalarewicz, Aleksandra, Daniel Pruchniewicz, and Dorota Kawałko. 2021. "Using Direct and Indirect Methods to Assess Changes in Riparian Habitats" Forests 12, no. 4: 504. https://doi.org/10.3390/f12040504
APA StyleHalarewicz, A., Pruchniewicz, D., & Kawałko, D. (2021). Using Direct and Indirect Methods to Assess Changes in Riparian Habitats. Forests, 12(4), 504. https://doi.org/10.3390/f12040504