Shifts in Lichen Species and Functional Diversity in a Primeval Forest Ecosystem as a Response to Environmental Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Functional Traits and Indicator Values for Lichens
2.4. Species Optima along Environmental Gradients
2.5. Species and Community Characteristics
2.6. Species Composition at Community, Tree Phorophyte, and Substrate Levels
3. Results
3.1. Shifts in the Realized Species’ Optima
3.2. Community-Specific Changes in Species Composition
3.3. Shifts in Species Composition at Tree Phorophyte and Substrate Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kirschbaum, U.; Cezanne, R.; Eichler, M.; Hanewald, K.; Windisch, U. Long-Term Monitoring of Environmental Change in German Towns through the Use of Lichens as Biological Indicators: Comparison Between the Surveys of 1970, 1980, 1985, 1995, 2005 and 2010 in Wetzlar and Giessen. Environ. Sci. Eur. 2012, 24, 19. [Google Scholar] [CrossRef] [Green Version]
- Benítez, A.; Aragón, G.; González, Y.; Prieto, M. Functional Traits of Epiphytic Lichens in Response to Forest Disturbance and as Predictors of Total Richness and Diversity. Ecol. Indic. 2018, 86, 18–26. [Google Scholar] [CrossRef]
- Chuquimarca, L.; Gaona, F.P.; Iñiguez-Armijos, C.; Benítez, Á. Lichen Responses to Disturbance: Clues for Biomonitoring Land-Use Effects on Riparian Andean Ecosystems. Diversity 2019, 11, 73. [Google Scholar] [CrossRef] [Green Version]
- Tripp, E.A.; Lendemer, J.C.; McCain, C.M. Habitat Quality and Disturbance Drive Lichen Species Richness in a Temperate Biodiversity Hotspot. Oecologia 2019, 190, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Kivinen, S.; Berg, A.; Moen, J.; Östlund, L.; Olofsson, J. Forest Fragmentation and Landscape Transformation in a Reindeer Husbandry Area in Sweden. Environ. Manag. 2012, 49, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, M.T.; Thor, G. Estimating Coextinction Risks from Epidemic Tree Death: Affiliate Lichen Communities among Diseased Host Tree Populations of Fraxinus Excelsior. PLoS ONE 2012, 7, e45701. [Google Scholar] [CrossRef] [Green Version]
- Łubek, A.; Kukwa, M.; Czortek, P.; Jaroszewicz, B. Impact of Fraxinus Excelsior Dieback on Biota of Ash-Associated Lichen Epiphytes at the Landscape and Community Level. Biodivers. Conserv. 2020, 29, 31–450. [Google Scholar] [CrossRef] [Green Version]
- Koch, N.M.; Matos, P.; Branquinho, C.; Pinho, P.; Lucheta, F.; Martins, S.M.A.; Vargas, V.M.F. Selecting Lichen Functional Traits as Ecological Indicators of the Effects of Urban Environment. Sci. Total Environ. 2019, 654, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Aptroot, A.; van Herk, C.M. Further Evidence of the Effects of Global Warming on Lichens, Particularly Those with Trentepohlia Phycobionts. Environ. Pollut. 2007, 146, 293–298. [Google Scholar] [CrossRef] [PubMed]
- ICCP Reports. The Intergovernmental Panel on Climate Change (IPCC) Is the United Nations Body for Assessing the Science Related to Climate Change. Available online: www.ipcc.ch/ (accessed on 20 February 2021).
- Aptroot, A. Lichens as an Indicator of Climate and Global Change. In Climate Change. Observed Impacts on Planet Earth; Elsevier, B.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Chapter 23; pp. 401–408. ISBN 978-0-444-53301-2. [Google Scholar] [CrossRef]
- Stapper, N.J.; John, V. Monitoring Climate Change with Lichens as Bioindicators. Pollut. Atmosphérique 2015, 226. Available online: http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=4936 (accessed on 20 February 2021). [CrossRef] [Green Version]
- Purvis, O.W.; Chimonides, J.; Din, V.; Erotokritou, L.; Jeffries, T.; Jones, G.C.; Louwhoff, S.; Read, H.; Spiro, B. Which factors are responsible for the changing lichen floras of London? Sci. Total Environ. 2003, 310, 179–189. [Google Scholar] [CrossRef]
- Łubek, A.; Kukwa, M.; Jaroszewicz, B.; Czortek, P. Changes in the Epiphytic Lichen Biota of Białowieża Primeval Forest Are Not Explained by Climate Warming. Sci. Total Environ. 2018, 643, 468–478. [Google Scholar] [CrossRef]
- Bässler, C.; Cadotte, M.W.; Beudert, B.; Heibl, C.; Blaschke, M.; Bradtka, J.H.; Langbehn, T.; Werth, S.; Müller, J. Contrasting Patterns of Lichen Functional Diversity and Species Richness Across an Elevation Gradient. Ecography 2015, 39, 689–698. [Google Scholar] [CrossRef]
- Soto-Medina, E.; Lücking, R.; Silverstone-Sopkin, P.A.; Torres, A.M. Changes in Functional and Taxonomic Diversity and Composition of Corticolous Lichens in an Altitudinal Gradient in Colombia. Cryptogam. Mycol. 2019, 40, 97–115. [Google Scholar] [CrossRef]
- Łubek, A.; Kukwa, M.; Jaroszewicz, B.; Czortek, P. Identifying Mechanisms Shaping Lichen Functional Diversity in a Primeval Forest. For. Ecol. Manag. 2020, 475, 118434. [Google Scholar] [CrossRef]
- Ellis, C.J.; Coppins, B.J. Contrasting Functional Traits Maintain Lichen Epiphyte Diversity in Response to Climate and Autogenic Succession. J. Biogeogr. 2006, 33, 1643–1656. [Google Scholar] [CrossRef]
- Giordani, P.; Brunialti, G.; Bacaro, G.; Nascimbene, J. Functional Traits of Epiphytic Lichens as Potential Indicators of Environmental Conditions in Forest Ecosystems. Ecol. Indic. 2012, 18, 413–420. [Google Scholar] [CrossRef]
- Root, H.T.; Geiser, L.H.; Jovan, S.; Neitlich, P. Epiphytic Macrolichen Indication of Air Quality and Climate in Interior Forested Mountains of the Pacific Northwest, USA. Ecol. Indic. 2015, 53, 95–105. [Google Scholar] [CrossRef]
- Kapfer, J.; Grytnes, J.-A.; Gunnarsson, U.; Birks, H.J.B. Fine-scale changes in vegetation composition in a boreal mire over 50 years. J. Ecol. 2011, 99, 1179–1189. [Google Scholar] [CrossRef]
- Czortek, P.; Kapfer, J.; Delimat, A.; Eycott, A.E.; Grytnes, J.-A.; Orczewska, A.; Ratyńska, H.; Zięba, A.; Jaroszewicz, B. Plant Species Composition Shifts in the Tatra Mts as a Response to Environmental Change: A Resurvey Study after 90 Years. Folia Geobot. 2018, 53, 333–348. [Google Scholar] [CrossRef]
- Kapfer, J.; Popova, K. Changes in Subarctic Vegetation after One Century of Land Use and Climate Change. J. Veg. Sci. 2021, 32, e12854. [Google Scholar] [CrossRef] [Green Version]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen in Okologischer, Dynamischer und Historischer Sicht; UTB: Stuttgart, Germany, 2010; pp. 1–1357. (In German) [Google Scholar]
- Malzahn, E. Monitoring zagrożeń i zanieczyszczenia środowiska leśnego Puszczy Białowieskiej. Kosmos 2002, 51, 435–441. [Google Scholar]
- Malzahn, E. Change Direction of the Air Pollution Level and Climatic Factors in the Białowieża Primeval Forest. Leśne Pr. Badaw. 2004, 1, 55–85. [Google Scholar]
- Malzahn, E.; Kwiatkowski, W.; Pierzgalski, E. Przyroda Nieożywiona. Klimat. In Białowieski Park Narodowy; Okołów, C., Karaś, M., Bołbot, A., Eds.; Wyd. Białowieski Park Narodowy: Białowieża, Poland, 2009; pp. 18–33. (In Polish) [Google Scholar]
- Czeszczewik, D.; Czortek, P.; Jaroszewicz, B.; Zub, K.; Rowiński, P.; Walankiewicz, W. Climate Change Has Cascading Effects on Tree Masting and the Breeding Performance of a Forest Songbird in a Primeval Forest. Sci. Total Environ. 2020, 747, 142084. [Google Scholar] [CrossRef]
- Staude, I.; Waller, D.M.; Bernhardt-Römermann, M.; Bjorkman, A.D.; Brunet, J.; De Frenne, P.; Hédl, R.; Jandt, U.; Lenoir, J.; Máliš, F.; et al. Replacements of Small—by Larger-Ranged Species Scale to Diversity Loss in Europe’s Temperate Forest Biome. Nat. Ecol. Evol. 2020, 4, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Parviainen, J. Virgin and Natural Forests in the Temperate Zone of Europe. For. Snow Landsc. Res. 2005, 79, 9–18. [Google Scholar]
- Keczyński, A. The Forests of the Strict Reserve of Białowieża National Park; Białowieski Park Narodowy: Białowieża, Poland, 2017; pp. 1–304. (In Polish) [Google Scholar]
- Sabatini, F.M.; Burrascano, S.; Keeton, W.S.; Levers, C.; Lindner, M.; Pötzschner, F.; Verkerk, P.J.; Bauhus, J.; Buchwald, E.; Chaskovsky, O.; et al. Where are Europe’s Last Primary Forests? Divers. Distrib. 2018, 24, 1426–1439. [Google Scholar] [CrossRef] [Green Version]
- Jaroszewicz, B.; Cholewińska, O.; Gutowski, J.M.; Samojlik, T.; Zimny, M.; Latałowa, M. Białowieża Forest—A Relic of the High Naturalness of European Forests. Forests 2019, 10, 849. [Google Scholar] [CrossRef] [Green Version]
- Cieśliński, S.; Czyżewska, K.; Faliński, J.B.; Klama, H.; Mułenko, W.; Żarnowiec, J. Relicts of the Primeval (Virgin) Forest. Relict Phenomena. In Cryptogamous Plants in the Forest Communities of Białowieża National Park (Project CRYPTO 3); Faliński, J.B., Mułenko, W., Eds.; Białowieska Stacja Geobotaniczna UW: Warszawa-Białowieża, Poland, 1996; Phytocoenosis 8 (N.S.) Arch. Geobot.1996, 6, 197–216. [Google Scholar]
- Motiejūnaitė, J.; Czyżewska, K.; Cieśliński, S. Lichens—Indicators of Old-Growth Forests in Biocentres of Lithuania and North-East Poland. Bot. Lith. 2004, 10, 59–74. [Google Scholar]
- Czerepko, J.; Gawryś, R.; Szymczyk, R.; Pisarek, W.; Janek, M.; Haidt, A.; Kowalewska, A.; Piegdoń, A.; Stebel, A.; Kukwa, M.; et al. How Sensitive Are Epiphytic and Epixylic Cryptogams as Indicators of Forest Naturalness? Testing Bryophyte and Lichen Predictive Power in Stands Under Different Management Regimes in the Białowieża Forest. Ecol. Indic. 2021, 125, 107532. [Google Scholar] [CrossRef]
- Latałowa, M.; Zimny, M.; Pędziszewska, A.; Kupryjanowicz, M. Postglacial History of Białowieża Forest—Vegetation, Climate and Human Activity. Parki Nar. Rez. Przyr. 2016, 35, 3–49. [Google Scholar]
- Żarnowiecki, G. Związki Pomiędzy Pokrywą Śnieżną a Roślinnością Białowieskiego Parku Narodowego. Pr. Geogr. 2008, 126 (Suppl. S2), 67–87. [Google Scholar]
- Sparks, T.H.; Jaroszewicz, B.; Krawczyk, M.; Tryjanowski, P. Advancing Phenology in Europe’s Last Lowland Primeval Forest: Non-Linear Temperature Response. Clim. Res. 2009, 39, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Polish Institute of Meteorology and Water Management. Available online: sanepubliczne.imgw.pl. (accessed on 20 February 2021).
- Cholewińska, O.; Adamowski, W.; Jaroszewicz, B. Homogenization of Temperate Mixed Deciduous Forests in Białowieża Forest: Similar Communities Are Becoming More Similar. Forests 2020, 11, 545. [Google Scholar] [CrossRef]
- Faliński, J.B.; Mułenko, W. Cryptogamous Plants in the Forest Communities of Białowieża National Park. Ecological Atlas (Project CRYPTO 4). Phytocoenosis 9 (N.S.) Suppl. Cartog. Geobot. 1997, 7, 1–512. [Google Scholar]
- Faliński, J.B. Phytophenological Atlas of the Forest Communities and Species of Białowieża National Park. Phytocoenosis 13 (N.S.) Arch. Geobot. 2001, 8, 1–160. [Google Scholar]
- Ratyńska, H.; Wojterska, M.; Brzeg, A.; Kołacz, M. Multimedialna Encyklopedia Zbiorowisk Roślinnych Polski [A multimedia encyclopedia of plant communities in Poland]; Instytut Edukacyjnych Technologii Informatycznych: Bydgoszcz, Poland, 2010. (In Polish) [Google Scholar]
- Cieśliński, S.; Czyżewska, K. Lichenes. In Cryptogamous Plants in the Forest Communities of Białowieża National Park. Ecological Atlas of Seminal and Cryptogamous Plants; (Project Crypto 4); Faliński, J.B., Mułenko, W., Eds.; Białowieska Stacja Geobotaniczna UW: Warszawa-Białowieża, Poland, 1997; Phytocoenosis 9 (N.S.) Suppl. Cartog. Geobot. 1997, 7, 123–163. [Google Scholar]
- Fałtynowicz, W.; Kossowska, M. The Lichens of Poland. A Fourth Checklist. Acta Bot. Siles. Monogr. 2016, 8, 3–122. [Google Scholar]
- Purvis, W. Lichens; Smithsonian Institute Press: Washington, DC, USA, 2000; pp. 1–112. [Google Scholar]
- Orange, A.; James, P.W.; White, F.J. Microchemical Methods for the Identification of Lichens; British Lichen Society: London, UK, 2001; pp. 1–101. [Google Scholar]
- Smith, C.W.; Aptroot, A.; Coppins, R.J.; Fletcher, A.; Gilbert, O.L.; Lames, P.W.; Wolseley, P.A. The Lichens of Great Britain and Ireland; The British Lichen Society: London, UK, 2009; pp. 1–1046. [Google Scholar]
- Wirth, V.; Hauck, M.; Schultz, M. Die Flechten Deutschlands; Ulmer: Stuttgart, Germany, 2013; Volume 1–2, pp. 1–1244. [Google Scholar]
- Ertz, D.; Sanderson, N.; Łubek, A.; Kukwa, M. Two New Species of Arthoniaceae from Old-Growth European Forests: Arthonia Thoriana and Inoderma Sorediatum, and a New Genus for Schismatomma Niveum. Lichenologist 2018, 50, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Wirth, V. Ökologische Zeigerwerte von Flechten. Herzogia 2010, 23, 229–248. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological Responses to Recent Climate Change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Laliberté, E.; Legendre, P.; Shipley, B. Package‘FD. Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology. 2014. Available online: cran.r-project.org/web/packages/FD/FD.pdf (accessed on 5 February 2021).
- Villéger, S.; Mason, N.W.; Mouillot, D. New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laliberté, E.; Legendre, P. A Distance-Based Framework for Measuring Functional Diversity from Multiple Traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, P.; Kozub, Ł.; Kotowski, W. Functional Diversity Analysis Helps to Identify Filters Affecting Community Assembly after Fen Restoration by Top-Soil Removal and Hay Transfer. J. Nat. Conserv. 2014, 1, 50–58. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional Richness, Functional Evenness and Functional Divergence: The Primary Components of Functional Diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Czortek, P.; Królak, E.; Borkowska, L.; Bielecka, A. Impacts of Soil Properties and Functional Diversity on the Performance of Invasive Plant Species Solidago Canadensis L. on Postagricultural Wastelands. Sci. Total Environ. 2020, 729, 139077. [Google Scholar] [CrossRef] [PubMed]
- Carroll, I.T.; Cardinale, B.J.; Nisbet, R.M. Niche and Fitness Differences Relate the Maintenance of Diversity to Ecosystem Function. Ecology 2011, 92, 1157–1165. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. November 28, Package ‘Vegan’. Community Ecology Package. 2020. Available online: cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 5 February 2021).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G.; Green, P.; et al. Package ‘lme4’. Linear Mixed-Effects Models Using ‘Eigen’ and S4. 1 December 2020. Available online: cran.r-project.org/web/packages/lme4/lme4.pdf (accessed on 5 February 2021).
- Bartoń, K. Package ‘MuMIn’. Multi-Model Inference. 15 April 2020. Available online: cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (accessed on 5 February 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Brzeziecki, B.; Woods, K.; Bolibok, L.; Zajączkowski, J.; Drozdowski, S.; Bielak, K.; Żybura, H. Over 80 years without Major Disturbance, Late-Successional Białowieża Woodlands Exhibit Complex Dynamism, with Coherent Compositional Shifts Towards True Old-Growth Conditions. J. Ecol. 2020, 108, 1138–1154. [Google Scholar] [CrossRef]
- Wolseley, P.A.; Leith, I.D.; van Dijk, N.; Sutton, M.A. Macrolichens on Twigs and Trunks as Indicators of Ammonia Concentrations across the UK—A Practical Method. In Atmospheric Ammonia; Sutton, M.A., Reis, S., Baker, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 101–108. [Google Scholar] [CrossRef]
- Vilsholm, R.L.; Wolseley, P.; Søchting, U.; Chimonides, J. Biomonitoring with Lichens on Twigs. Lichenologist 2009, 41, 1–14. [Google Scholar] [CrossRef]
- Loppi, S.; De Dominicis, V. Effects of Agriculture on Epiphytic Lichen Vegetation in Central Italy. Isr. J. Plant. Sci. 1996, 44, 297–307. [Google Scholar] [CrossRef]
- Johansson, V.; Ranius, T.; Snäll, T. Epiphyte Metapopulation Dynamics Are Explained by Species Traits, Connectivity, and Patch Dynamics. Ecology 2012, 93, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belinchón, R.; Harrison, P.J.; Mair, L.; Várkonyi, G.; Snäll, T. Local Epiphyte Establishment and Future Metapopulation Dynamics in Landscapes with Different Spatiotemporal Properties. Ecology 2017, 98, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Pierzgalski, E.; Boczoń, A.; Tyszka, J. Zmienność opadów i położenia wód gruntowych w Białowieskim Parku Narodowym. Kosmos 2002, 51, 415–425. [Google Scholar]
- Frey, S.J.K.; Hadley, A.S.; Johnson, S.L.; Schulze, M.; Jones, J.A.; Betts, M.G. Spatial Models Reveal the Microclimatic Buffering Capacity of Old-Growth Forests. Sci. Adv. 2016, 2, e1501392. [Google Scholar] [CrossRef] [Green Version]
- Kovács, B.; Tinya, F.; Ódor, P. Stand Structural Drivers of Microclimate in Mature Temperate Mixed Forests. Agric. Forest Meteorol. 2017, 234, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Zellweger, F.; De Frenne, P.; Lenoir, J.; Vangansbeke, P.; Verheyen, K.; Bernhardt-Römermann, M.; Baeten, L.; Hédl, R.; Berki, I.; Brunet, J.; et al. Forest Microclimate Dynamics Drive Plant Responses to Warming. Science 2020, 368, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Cholewińska, O.; Keczyński, A.; Smerczyński, I.; Jaroszewicz, B. European Ash (Fraxinus Excelsior L.) Dieback in a Core Area of Białowieża National Park. Parki Nar. Rez. Przyr. 2018, 37, 3–18. [Google Scholar]
- Malewski, T.; Topor, R.; Nowakowska, J.A.; Oszako, T. Decline of Black Alder Alnus Glutinosa (L.) Gaertn. Along the Narewka River in the Białowieża Forest District. Leśne Pr. Badaw. 2020, 81, 147–152. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Hewison, R.L.; Hester, A.J.; Broome, A.; Kirby, K.J. Potential Impacts of the Loss of Fraxinus Excelsior (Oleaceae) due to Ash Dieback on Woodland Vegetation in Great Britain. New J. Bot. 2016, 6, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Boczoń, A.; Kowalska, A.; Ksepko, M.; Sokołowski, K. Climate Warming and Drought in the Bialowieża Forest from 1950–2015 and Their Impact on the Dieback of Norway Spruce Stands. Water 2018, 10, 1502. [Google Scholar] [CrossRef] [Green Version]
- Mścicki, S. Changes in the Stands of the Białowieża National Park from 2000 to 2015. Leśne Pr. Badaw. 2016, 77, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Pentecost, A. Some Observations on the Size and Shape of Lichen Ascospores in Relation to Ecology and Taxonomy. New Phytol. 1981, 89, 667–678. [Google Scholar] [CrossRef]
- Majewski, T. Parasitic Fungi of the Białowieża National Park Against the Background of the Mycoflora of Poland (Peronosporales, Erysiphaceae, Uredinales, Ustilaginales). Acta Mycol. 1971, 7, 299–388. [Google Scholar] [CrossRef] [Green Version]
- Diederich, P.; Ertz, D.; Stapper, E.; Sérusiaux, E.; Van den Broeck, D.; van den Boom, P.; Ries, C. The Lichens and Lichenicolous Fungi of Belgium, Luxembourg and Northern France. 2018. Available online: www.lichenology.info (accessed on 28 February 2021).
- Łubek, A.; Kukwa, M.; Czortek, P.; Jaroszewicz, B. Lichenicolous Fungi Are More Specialized than Their Lichen Hosts in Primeval Forest Ecosystems, Białowieża Forest, Northeast Poland. Fungal Ecol. 2019, 42, 100866. [Google Scholar] [CrossRef]
- Motiejūnaitė, J.; Iršėnaitė, R.; Adamonytė, G.; Dagys, M.; Taraškevičius, R.; Matulevičiūtė, D.; Koreivienė, J. Pine Forest Lichens Under Eutrophication Generated by a Great Cormorant Colony. Lichenologist 2014, 46, 213–228. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łubek, A.; Kukwa, M.; Jaroszewicz, B.; Czortek, P. Shifts in Lichen Species and Functional Diversity in a Primeval Forest Ecosystem as a Response to Environmental Changes. Forests 2021, 12, 686. https://doi.org/10.3390/f12060686
Łubek A, Kukwa M, Jaroszewicz B, Czortek P. Shifts in Lichen Species and Functional Diversity in a Primeval Forest Ecosystem as a Response to Environmental Changes. Forests. 2021; 12(6):686. https://doi.org/10.3390/f12060686
Chicago/Turabian StyleŁubek, Anna, Martin Kukwa, Bogdan Jaroszewicz, and Patryk Czortek. 2021. "Shifts in Lichen Species and Functional Diversity in a Primeval Forest Ecosystem as a Response to Environmental Changes" Forests 12, no. 6: 686. https://doi.org/10.3390/f12060686
APA StyleŁubek, A., Kukwa, M., Jaroszewicz, B., & Czortek, P. (2021). Shifts in Lichen Species and Functional Diversity in a Primeval Forest Ecosystem as a Response to Environmental Changes. Forests, 12(6), 686. https://doi.org/10.3390/f12060686