Mechanical Properties of Machine Stress Graded Sawn Timber Depending on the Log Type
Abstract
:1. Introduction
2. Experimental Tests
2.1. Material
2.2. Methods
2.2.1. Non-Destructive Tests of Timber
2.2.2. Destructive Tests of Timber
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
- Actual values of density and MOE for the tested timber from butt and middle logs were higher than the minimum limit values resulting from the C strength classes into which the timber pieces were sorted during machine strength grading.
- The higher the C class of the sawn timber from the bottom and middle logs, the higher the percentage of fulfillment of required values according to EN 338.
- The highest values of the coefficient of determination were obtained from timber from butt logs.
- The lowest mechanical properties were obtained from sawn timber made of top logs.
- The greater efficiency of higher strength classes C was obtained for sawn timber originating from butt logs compared to middle logs. The share of sawn timber of higher strength classes was the lowest for sawn timber made of top logs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forest Product Statistics. Available online: http://www.fao.org/forestry/statistics/80938/en/ (accessed on 24 March 2021).
- Ranta-Maunus, A.; Denzler, J.; Stapel, P. Strength of european timber. In Properties of Spruce and Pine Tested in Gradewood Project (Report of the Combigrade–Project Phase 2); VTT Publications: Espoo, Finland, 2011. [Google Scholar]
- Moore, J.R.; Lyon, A.J.; Searles, G.J.; Lehneke, S.A.; Ridley-Ellis, D.J. Within-and between-stand variation in selected properties of Sitka spruce sawn timber in the UK: Implications for segregation and grade recovery. Ann. For. Sci. 2013, 70, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Baltrušaitis, A.; Pranckevičienė, V. Density and stiffness-strength variations within Lithuanian-grown Scots pine trees. In Proceedings of the COST Action FP1004 Meeting “Enhance Mechanical Properties of Timber, Engineered Wood Products and Timber Structures”, Zagreb, Croatia, 19–20 April 2012. [Google Scholar]
- Rais, A.; Pretzsch, H.; van de Kuilen, J.W.G. Roundwood pregrading with longitudinal acoustic waves for production of structural boards. Eur. J. Wood Wood Prod. 2014, 72, 87–98. [Google Scholar] [CrossRef]
- Teischinger, A.; Patzelt, M. XXL-Wood. Materialkenngrößen als Grundlage für innovative Verarbeitungstechnologien und Produkte zur wirtschaftlichen nachhaltigen Nutzung der Österreichischen Nadelstarkholzreserven. In Berichte aus Energie-und Umweltforschung 27/2006 (Material Properties as the Basis for Innovative Products and Technologies for the Rational Use of Austrian Reserves of Large-Diameter Softwoods); Universität für Bodenkultur Wien: Wien, Austria, 2006. [Google Scholar]
- Kraler, A.; Maderebner, R. Gebirgsholz–Wald Ohne Grenzen; Deutliche Verbesserung des Marktwertes Süd-Ost-& Nordtiroler Gebirgshölzer und Ausgewählter Holznischenprodukte [Wood from the Mountains-Forest without Borders; Marked Improvement in the Market Value of Wood from South, East and North Tyrol and Selected Niche Wood Products]; Institut für Konstruktion und Materialwissenschaften Arbeitsbereich Holzbau, Leopold Franzens Universität Innsbruck: Innsbruck, Austria, 2012. [Google Scholar]
- Müller, P.H. Mechanical stress grading of structural timber in Europe, North America and Australia with a research programme on this field for South Africa. Wood Sci. Technol. 1968, 2, 43–72. [Google Scholar] [CrossRef]
- Glos, P.; Schulz, H. Stand und aussichten dre maschinellen Schnittholzsortierung. Holz Roh Werkst. 1980, 38, 409–417. [Google Scholar] [CrossRef]
- Mettem, C.J. The Principles Involved in Stress Grading with Special Reference to Its Application in Developing Countries; UNIDO-United Nations Industrial Development Organization: Vienna, Austria, 1981. [Google Scholar]
- Krzosek, S. Maszynowe sortowanie tarcicy w Niemczech. Przemysł Drzewny 1995, 2, 10–12. [Google Scholar]
- Fewell, A.F. Machine stress grading of timber in the United Kingdom. Holz Roh Werkst. 1982, 40, 455–459. [Google Scholar] [CrossRef]
- Glos, P. Die maschinelle Sortierung von Schnittholz. Stand der Technik–Vergleich der Verfahren. Holz Zent. 1982, 13, 153–155. [Google Scholar]
- Denzler, J.K.; Diebold, R.; Glos, P. Machine strength grading–commercially used grading machines–current developments. In Proceedings of the 14th International Symposium on Nondestructive Testing of Wood, Eberswalde, Germany, 2–4 May 2005; Friedrich-Wilhelm Broker; Fachhochschule Eberswalde. Shaker Verlag: Aachen, Germany, 2005; pp. 11–16. [Google Scholar]
- Bacher, M. Comparison of different machine strength grading principles. In Proceedings of the COST E53 Conference, Delft, The Netherlands, 29–30 October 2008; Gard, W.F., van de Kuilen, J.W.G., Eds.; Delft University of Technology: Delft, The Netherlands, 2008; pp. 183–193. [Google Scholar]
- Ridley-Ellis, D.; Stapel, P.; Baño, V. Strength grading of sawn timber in Europe: An explanation for engineers and researchers. Eur. J. Wood Wood Prod. 2016, 74, 291–306. [Google Scholar] [CrossRef]
- Giudiceandrea, F. Stress grading lumber by a combination of vibration stress waves and X-ray Scanning. In Proceedings of the 11th International Conference on Scanning Technology and Process Optimization in the Wood Industry (Scan Tech 2005), Las Vegas, NV, USA, 24–26 July 2005; Szymani, R., Ed.; Wood Machining Institute: Berkeley, CA, USA, 2005; pp. 99–108. [Google Scholar]
- Glos, P.; Burger, N. Maschinelle Sortierung von Frisch eingeschnittenen Schnittholz. Holz Roh Werkst. 1998, 56, 319–329. [Google Scholar] [CrossRef]
- Glos, P.; Becker, G.; Diebold, R.; Pelz, S. Einstufung von Douglasie in die europäischen festigkeitsklassen [classification of douglas fir into the European strength classes]. In Report No. 97501; Wood Research Munich: Munich, Germany, 1988. [Google Scholar]
- Diebold, R.; Schleifer, A.; Glos, P. Machine grading of structural sawn timber from various softwood and hardwood species. In Proceedings of the 12th International Symposium on Nondestructive Testing of Wood, Sopron, Hungary, 13–15 September 2000; University of Wester Hungary: Sopron, Hungary, 2000; pp. 139–146. [Google Scholar]
- Glos, P.; Schleifer, A. Maschinelle festigkeitssortierung von kiefernschnittholz [mechanical strength grading of pine lumber]. In Report No. 01515; Wood Research Munich: Munich, Germany, 2002. [Google Scholar]
- Hanhijarvi, A.; Ranta-Maunus, A.; Turk, G. Potential of strength grading of timber with combined measurement techniques. In Report of the Combigrade—Project Phase 1; VTT Technical Research Centre of Finland: Espoo, Finland, 2005; p. 68. [Google Scholar]
- Hanhijärvi, A.; Ranta-Maunus, A. Development of strength grading of timber using combined measurement techniques. In Report of the Combigrade—Project Phase 2; VTT Technical Research Centre of Finland: Espoo, Finland, 2008. [Google Scholar]
- Nocetti, M.; Bacher, M.; Brunetti, M.; Crivellaro, A.; van de Kuilen, J.-W. Machine grading of Italian structural timber: Preliminary results on different wood species. In Proceedings of the World Conference on Timber Engineering, Trento, Italy, 20–24 June 2010; Ceccotti, A., van de Kuilen, J.W., Eds.; WCTE: Riva Del Garda, Italy, 2010. [Google Scholar]
- Viguier, J.; Jehl, A.; Bleron, L.; Meriaudeau, F. Improving strength grading of timber by grain angle measurement and mechanical modeling. Wood Mater. Sci. Eng. 2015, 10, 145–156. [Google Scholar] [CrossRef]
- Viguier, J.; Bourreau, D.; Bocquet, J.F.; Pot, G.; Bleron, L.; Lanvin, J.D. Modelling mechanical properties of spruce and Douglas fir timber by means of X-ray and grain angle measurements for strength grading purpose. Eur. J. Wood Wood Prod. 2017, 75, 527–541. [Google Scholar] [CrossRef] [Green Version]
- Ehrhart, R.; Steiger, A.; Frangi, A. Non-contact method for the determination of fibre direction of European beech wood (Fagus sylvatica l.). Eur. J. Wood Wood Prod. 2018, 76, 925–935. [Google Scholar] [CrossRef]
- Olsson, A.; Oscarsson, J. Strength grading on the basis of high resolution laser scanning and dynamic excitation: A full scale investigation of performance. Eur. J. Wood Wood Prod. 2017, 75, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Glos, P.; Henrici, D.; Lederer, B. Verbesserung der Wettbewerbsfähigkeit der sägeindustrie durch erhöhung der schnittholzqualität [improvement of competitiveness sawmill industry via enhancement of timber quality]. In Report No. 96507; Wood Research Munich: Munich, Germany, 1999. [Google Scholar]
- Stöd, R.; Verkasalo, E.; Heinonen, J. Quality and bending properties of sawn timber from commercial thinnings of scots pine (Pinus sylvestris L). Balt. For. 2016, 22, 148–162. [Google Scholar]
- Duchesne, I. Effect of rotation age on lumber grade yield, bending strength and stiffness in Jack pine (Pinus banksiana L.) natural stands. Wood Fiber Sci. 2006, 38, 84–94. [Google Scholar]
- Zhang, S.Y.; Chauret, G.; Swift, E.; Duchesne, I. Effects of precommercial thinning on tree growth and lumber quality in a jack pine stand in New Brunswick, Canada. Can. J. For. Res. 2006, 36, 945–952. [Google Scholar] [CrossRef]
- Johansson, M.; Kliger, R. Variability in strength and stiffness of structural Norway spruce timber: Influence of raw material parameters. In Proceedings of the World Conference on Timber Engineering; Whistler, BC, Canada, 31 July–3 August 2000; Barrett, J.D., Ed.; WCTE: Whistler, BC, Canada, 2000; Volume 9. [Google Scholar]
- Krzosek, S.; Burawska-Kupniewska, I.; Mańkowski, P. The influence of scots pine log type (Pinus sylvestris L.) on the mechanical properties of lumber. Forests 2020, 11, 1257. [Google Scholar] [CrossRef]
- PN-D-95017. Surowiec Drzewny–Drewno Wielkowymiarowe Iglaste–Wspólne Wymagania i Badania (Timber Raw Material. Large-Size Softwood. Common Requirements and Research); Polish Committee for Standardization (PKN): Warsaw, Poland, 1992.
- PN-D-02002. Surowiec Drzewny. Podział, Terminologia i Symbole (Wood Raw Material. Division, Terminology and Symbols); Polish Committee for Standardization (PKN): Warsaw, Poland, 1993.
- EN 338. Timber Structures-Strength Classes; European Committee for Standardization (CEN): Brussels, Belgium, 2016. [Google Scholar]
- EN 408 +A1. Timber Structures. Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties; European Committee for Standardization (CEN): Brussels, Belgium, 2012. [Google Scholar]
- PN-D-94021. Tarcica Konstrukcyjna Iglasta Sortowana Metodami Wytrzymałościowymi (Coniferous Construction Timber Sorted by Strength Methods); Polish Committee for Standardization (PKN): Warsaw, Poland, 2013.
- EN 13183-1. Moisture Content of a Piece of Sawn Timber-Part 1: Determination by Oven Dry Method; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- EN 384. Structural Timber. Determination of Characteristic Values of Mechanical Properties and Density; European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- Krzosek, S. Wytrzymałościowe Sortowanie Polskiej Sosnowej Tarcicy Konstrukcyjnej Rożnymi Metodami [Strength Grading of Polish Pine Structural Sawn Timber]; Wydawnictwo SGGW: Warsaw, Poland, 2009. [Google Scholar]
- Björklund, L.; Walfridsson, E. Tallvedens egenskaper i Sverige-Torr-rådensitet, kärnvedhalt, fuktighet och barkhalt. [Properties of scots pine wood in Sweden: Basic density, heartwood, moisture and bark content]. In Rapport Nr. 234; Department of Forest Products, Swedish University of Agriculture Sciences: Uppsala, Sweden, 1993; p. 67. [Google Scholar]
- Repola, J. Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to de-termine average wood density. Silva Fenn. 2006, 40, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Mirski, R.; Dziurka, D.; Chuda-Kowalska, M.; Wieruszewski, M.; Kawalerczyk, J.; Trociński, A. The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part I: Evaluation of the quality of the pine timber in the bending test. Materials 2020, 13, 3957. [Google Scholar] [CrossRef]
- Jelonek, T.; Pazdrowski, W.; Tomczak, A.; Grzywiński, W. Biomechanical stability of pines growing on former farmland in northern Poland. Wood Resour. 2012, 57, 31–44. [Google Scholar]
- Antony, F.; Jordan, L.; Schimleck, L.R.; Clark, A.; Souter, R.A.; Daniels, R.F. Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States. Can. J. For. Res. 2011, 41, 1522–1533. [Google Scholar] [CrossRef]
- Kollmann, F.F.P.; Cȏté, A.C.J. Principles of Wood Science and Technology: Solid Wood; Springer: Berlin, Germany, 1968. [Google Scholar]
- Ilic, J. Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis. Holz Roh Werkst. 2001, 59, 169–175. [Google Scholar] [CrossRef]
- Eriksson, L.O.; Gustavsson, L.; Hänninen, R.; Kallio, M.; Lyhykäinen, H.; Pingoud, K.; Pohjola, J.; Sathre, R.; Solberg, B.; Svanaes, J. Climate change mitigation through increased wood use in the European construction sector—Towards an integrated modelling framework. Eur. J. For. Res. 2012, 131, 131–144. [Google Scholar] [CrossRef]
- Divos, F.; Tanaka, T. Relation between static and dynamic modulus of elasticity of wood. Acta Silv. Lignaria Hung. 2005, 1, 105–110. [Google Scholar]
- Wang, S.Y.; Yang, T.H.; Tsai, M.J. Evaluation of the mechanical properties of Douglas-fir lumber and its structural glulam by non-destructive techniques. In Proceedings of the 8th World Conference on Timber Engineering, Lahti, Finland, 14–17 June 2004; Suomen Rakennusinsinöörien Liitto, Finnish Association of Civil Engineers RIL: Helsinki, Finland, 2004; pp. 179–183. [Google Scholar]
- Bučar, D.; Bučar, B. Strength grading of structural timber using the single mode transverse damped vibration method. Wood Res. 2011, 56, 67–76. [Google Scholar]
- Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Aleinikovas, M.; Beniušienė, L.; Aleinikovienė, J.; Škėma, M. Scots pine and norway spruce wood properties at sites with different stand densities. Forests 2020, 11, 587. [Google Scholar] [CrossRef]
- Machado, J.S.; Cruz, H.P. Within stem variation of Maritime pine timber mechanical properties. Holz Roh Werkst. 2005, 63, 154–159. [Google Scholar] [CrossRef]
- Steiger, R.; Arnold, M. Strength grading of Norway spruce structural timber: Revisiting property relationships used in EN 338 classification system. Wood Sci. Technol. 2009, 43, 259–278. [Google Scholar] [CrossRef]
- Høibø, O.; Vestøl, G.I.; Fischer, C.; Fjeld, L.; Øvrum, A. Bending properties and strength grading of Norway spruce: Variation within and between stands. Can. J. For. Res. 2014, 44, 128–135. [Google Scholar] [CrossRef]
- Halabe, U.B.; Bidigalu, G.M.; Gangarao, H.V.S.; Ross, R.J. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques. Mater. Evol. 1997, 55, 1013–1018. [Google Scholar]
- Krzosek, S.; Grześkiewicz, M.; Bacher, M. Mechanical properties of Polish-grown Pinus silvestris L. structural sawn timber. In Proceedings of the COST E53 Conference Proceedings, Delft, The Netherlands, 29–30 October 2008; pp. 253–260. [Google Scholar]
Class | Log Type | N | DEN | MOE | MOE_dyn | MOR | |
---|---|---|---|---|---|---|---|
(-) | (kg/m3) | (MPa) | (MPa) | (MPa) | |||
All | B | 170 | 510 | 583 (54) | 14,063 (2851) | 13,580 (2397) * | 54 (19) |
M | 170 | 537 (49) | 12,309 (2327) | 11,947 (1922) * | 42 (14) | ||
T | 170 | 504 (37) | 10,493 (1893) | 10,390 (1658) * | 36 (12) | ||
C40 | B | 23 | 29 {6%} | 654 (52) [136%] | 18,046 (1652) [136%] | 17,561 (936) | 72 (14) [180%] |
M | 6 | 636 (25) [133%] | 16,936 (512) [127%] | 17,604 (483) | 50 (15) [125%] | ||
T | 0 | - | - | - | - | ||
C35 | B | 60 | 91 {18%} | 611 (43) [130%] | 15,472 (1089) [125%] | 15,492 (947) | 64 (14) [183%] |
M | 28 | 584 (37) [124%] | 14,701 (1351) [119%] | 15,018 (1018) | 50 (13) [143%] | ||
T | 3 | 561 (26) [119%] | 14,011 (678) [113%] | 14,537 (206) | 53 (3) [151%] | ||
C30 | B | 46 | 130 {26%} | 560 (52) [122%] | 13,221 (998) [116%] | 13,316 (896) | 52 (14) [173%] |
M | 55 | 525 (27) [114%] | 12,841 (922) [113%] | 13,261 (790) | 47 (12) [157%] | ||
T | 29 | 532 (35) [116%] | 12,903 (1347) [113%] | 12,996 (617) | 47 (14) [157%] | ||
C24 | B | 23 | 200 {40%} | 506 (47) [120%] | 10,706 (877) [102%] | 10,994 (684) | 41 (13) [171%] |
M | 69 | 486 (34) [116%] | 10,734 (1085) [103%] | 10,972 (783) | 39 (12) [163%] | ||
T | 108 | 477 (34) [114%] | 10,276 (1046) [98%] | 10,847 (858) | 36 (11) [150%] | ||
C18 | B | 9 | 43 {8%} | 479 (20) [126%] | 8867 (1130) [104%] | 8793 (543) | 23 (5) [128%] |
M | 10 | 452 (41) [119%] | 8615 (886) [101%] | 8900 (321) | 26 (9) [144%] | ||
T | 24 | 461 (32) [121%] | 8219 (1271) [96%] | 8914 (425) | 28 (8) [156%] | ||
Reject | B | 1 | 9 {2%} | 470 (-) | 8072 (-) | 6625 (-) | 21 (-) |
M | 2 | 458 (-) | 7490 (-) | 7790 (-) | 21 (-) | ||
T | 6 | 434 (19) | 7036 (1010) | 7478 (749) | 30 (9) |
Feature | Factor | SS | DF | MS | F | p |
---|---|---|---|---|---|---|
DEN | Type of log (1) | 13,273.7 | 1 | 13,273.69 | 9.63965 | 0.002017 * |
Strength class (2) | 387,189.8 | 4 | 96,797.44 | 70.29649 | 0.000000 * | |
1 *2 | 7698.1 | 9 | 855.34 | 0.62117 | 0.779319 NS | |
Error | 660,954.4 | 480 | 1376.99 | - | - | |
MOE | Type of log (1) | 4,061,502 | 1 | 4,061,502 | 3.3307 | 0.068619 NS |
Strength class (2) | 1,014,500,000 | 4 | 253,624,881 | 207.9879 | 0.000000 * | |
1 *2 | 11,871,920 | 9 | 1,319,103 | 1.0817 | 0.374606 NS | |
Error | 586,541,600 | 480 | 1,219,421 | - | - | |
MOR | Type of log (1) | 708.70 | 1 | 708.699 | 4.78563 | 0.029177 * |
Strength class (2) | 22,544.32 | 4 | 5636.079 | 38.05876 | 0.000000 * | |
1 *2 | 3998.60 | 9 | 444.289 | 3.00015 | 0.001715 * | |
Error | 71,526.93 | 480 | 148.089 | - | - |
Log Type | DEN/MOE | DEN/MOR | MOE/MOR | MOE/MOE_dyn | MOE_dyn/MOR |
---|---|---|---|---|---|
Butt | 0.64 | 0.51 | 0.66 | 0.90 | 0.52 |
Middle | 0.60 | 0.24 | 0.59 | 0.88 | 0.29 |
Top | 0.47 | 0.17 | 0.65 | 0.84 | 0.32 |
All | 0.71 | 0.51 | 0.71 | 0.91 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burawska-Kupniewska, I.; Mańkowski, P.; Krzosek, S. Mechanical Properties of Machine Stress Graded Sawn Timber Depending on the Log Type. Forests 2021, 12, 532. https://doi.org/10.3390/f12050532
Burawska-Kupniewska I, Mańkowski P, Krzosek S. Mechanical Properties of Machine Stress Graded Sawn Timber Depending on the Log Type. Forests. 2021; 12(5):532. https://doi.org/10.3390/f12050532
Chicago/Turabian StyleBurawska-Kupniewska, Izabela, Piotr Mańkowski, and Sławomir Krzosek. 2021. "Mechanical Properties of Machine Stress Graded Sawn Timber Depending on the Log Type" Forests 12, no. 5: 532. https://doi.org/10.3390/f12050532
APA StyleBurawska-Kupniewska, I., Mańkowski, P., & Krzosek, S. (2021). Mechanical Properties of Machine Stress Graded Sawn Timber Depending on the Log Type. Forests, 12(5), 532. https://doi.org/10.3390/f12050532