Caffeine Interactions with Wood Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experiment Procedure
2.3. Chemical Analyses
2.4. Statistical Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpita, N.C.; Giheaut, D.M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the wall during growth. Plant J. 1993, 3, 1–30. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Bauche, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.G.; Pascal, F.; Capucine, D.; Denilson da Silva, P.; Xuan-mi, M. Assessingthe impact of woody and agricultural biomass variability on its behaviour in torrefaction through Principal Component Analysis. Biomass Bioenergy 2020, 134. [Google Scholar]
- Gibsen, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef] [PubMed]
- Pánek, M.; Reinprecht, L.; Hulla, M. Ten essential Oils for Beech Wood Protection–Efficacy Against Wood-destroying Fungi and Moulds, and Effect on Wood Discoloration. BioResources 2014, 9, 5588–5603. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Hamdan, S.; Hasan, M.; Ahmed, A.S.; Rahman, M.R. Effect of coupling Reactions on the mechanical and biological properties of tropical wood polymers composites (WPC). Int. Biodeterior. Biodegrad. 2012, 72, 108–113. [Google Scholar] [CrossRef]
- Singh, T.; Singh, A.P. A review on natural products as wood protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Lum, W.C.; Abdul Halip, J.; Ang, A.F.; Ta, L.P.; Chin, K.L.; Md Tahir, P. Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater. 2018, 181, 408–419. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B.; Frankowski, M. Durability of wood treated with aatmos and caffeine-towards the long-term carbon storage. Maderas-Cienc. Tecnol. 2018, 20, 455–468. [Google Scholar]
- Broda, M. Natural compounds for Wood protection against Fungi–A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef]
- Testolin, R.C.; Tischer, V.; Lima, A.O.; Cotelle, S.; Férard, J.F.; Radetski, C.M. Aquatic ecotoxicity assessment of a new natural formicide. Environ. Sci. Pollut. Res. Int. 2020, 19, 2186–2194. [Google Scholar] [CrossRef]
- Arora, D.S.; Ohlan, D. In vitro studies on antifungal activity of tea (Camellia sinensis) and coffee (Coffea arabica) against wood-rotting fungi. J. Basic Microbiol. 1997, 37, 159–165. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, L.; Zhang, Z. Antifungal activity of caffeine against fungal pathogens of tea plant. J. Nanjing. Agric. Univ. 2020, 2, 63–67. [Google Scholar]
- Kobetičová, K.; Kočí, V.; Petříková, M.; Šimůnková, K.; Černý, R. Growth effectivity of molds in contact with methylxanthines. MATEC Web Conf. 2019, 282, 02058. [Google Scholar] [CrossRef]
- Kobetičová, K.; Nábělková, J.; Ďurišová, K.; Šimůnková, K.; Černý, R. Antifungal Activity of Methylxanthines in Relation to their Properties. Bioresources 2020, 15, 8110–8120. [Google Scholar]
- Barbero-López, A.; Monzó-Beltrán, J.; Virjamo, V.; Akkanen, J.; Haapala, A. Revalorization of coffee silver skin as a potential feedstock for antifungal chemicals in wood preservation. Int. Biodeter. Biodegr. 2020, 152, 105011. [Google Scholar] [CrossRef]
- Kwasniewska-Sip, P.; Cofta, G.; Nowak, P.B. Resistance of fungal growth on Scots pine treated with caffeine. Int. Biodeterior. Biodegrad. 2018, 132, 178–184. [Google Scholar] [CrossRef]
- Kwasniewska-Sip, P.; Bartkowiak, M.; Cofta, G.; Nowak, P.B. Resistance of Scots Pine (Pinus sylvestris L.) after Treatment with Caffeine and Thermal Modification against Aspergillus niger. Bioresources 2019, 14, 1890–1898. [Google Scholar]
- Kobetičová, K.; Böhm, M.; Černý, R. Mutual interactions of fungi and molds on woods treated with a caffeine solution: A preliminary study. AIP Conf. Proc. 2020, 2275, 020010. [Google Scholar]
- Ratajczak, I.; Wozniak, M.; Kwasniewska-Sip, P.; Szentner, K.; Cofta, G.; Mazela, B. Chemical characterization of wood treated with a formulation based on propolis, caffeine and organosilanes. Eur. J. Wood Wood Prod. 2018, 76, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Pánek, M.; Šimůnková, K.; Novák, D.; Dvořák, O.; Schönfelder, O.; Šedivka, P.; Kobetičová, K. Caffeine and TiO2 Nanoparticles Treatment of Spruce and Beech Wood for Increasing Transparent Coating Resistance against UV-Radiation and Mould Attacks. Coatings 2020, 10, 1141. [Google Scholar] [CrossRef]
- Furtado, L.M.; Hilamatu, K.C.P.; Balaji, K.; Ando, R.A.; Petri, D.F.S. Miscibility and Sustained release of drug from cellulose acetate butyrate/caffeine films. J. Drug Deliv. Sci. Technol. 2020, 55, 101472. [Google Scholar] [CrossRef]
- Tavagnacco, L.; Engström, O.; Schnupf, U.; Saboungi, M.-L.; Himmel, M.; Widmalm, G.; Cesàro, A.; Brady, J.W. Caffeine and Sugars Interact in Aqueous Solutions: A Simulation and NMR Study. J. Phys. Chem. B 2020, 116, 11701–11711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oanca, G.; Nadejde, C.; Creanga, D. Caffeine-Solvent Interaction Studied by UV Spectrometry and Molecular Modelling. Rom. J. Biophys. 2014, 24, 11–23. [Google Scholar]
- Kaplan, E.; Holmes, J.H.; Sapeika, N. Caffeine content of tea and coffee. S. Afr. Med. J. 1974, 48, 510–511. [Google Scholar] [PubMed]
- Aurnaud, M.J. The pharmacology of caffeine. Prog. Drug 1987, 31, 273–313. [Google Scholar]
- Wanyika, H.N.; Gatebe, E.G.; Gitu, L.M.; Ngumba, E.K.; Maritim, C.W. Determination of caffeine content of tea and instant coffee brands found in the Kenyan market. Afr. J. Food Sci. 2020, 4, 353–358. [Google Scholar]
- Novotný, V. Chemie Dřeva a Pomocné Papírenské Přípravky pro 2.Ročník SPŠ Papírenských, 1st ed.; Státní Nakladatelství Technické Literatury: Prague, Czech Republic, 1974; p. 102. [Google Scholar]
- Hasík, P. Reologie Gelových a Solových Soustav Přírodních Polymerů a Jejich Modifikantů. Master’s Thesis, Tomas Bata Univerity in Zlín, Zlín, Czech Republic, 2007. [Google Scholar]
- Kwasniewska-Sip, P.; Wozniak, M.; Jankowski, W.; Ratajczak, I. Chemical changes of Wood Treated with Caffeine. Materials 2021, 14, 497. [Google Scholar] [CrossRef] [PubMed]
- Rowell, R.M. Handbook of wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Harman-Ware, A.E.; Happs, R.M.; Davison, B.H.; Mark, E.D. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers. Biotechnol. Biofuels 2017, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Schoch, G.; Goepfert, S.; Morant, M.; Hehn, A.; Meyer, D.; Ullmann, P.; Werck-Reichhart, D. CYP98A3 from Arabidopsis thaliana Is a 3′-Hydroxylase of Phenolic Esters, a Missing Link in the Phenylpropanoid Pathway. J. Biol. Chem. 2001, 276, 36566–36574. [Google Scholar] [CrossRef] [Green Version]
- Goodell, B.; Qian, Y.; Jellison, J. Fungal Decay of Wood: Soft Rot-Brown Rot-White Rot. ACS Symp. Ser. 2008, 982, 9–31. [Google Scholar]
- Schwarze, F.W.; Engels, J.; Claus, M. Fungal Strategies of Wood Decay in Trees, 1st ed.; Springer: Berlin/Heidelberg/Freiburg, Germany, 2000; p. 185. [Google Scholar]
- Martínez, A.T.; Speranza, M.; Ruiz-Dueňas, F.J.; Ferreira, P.; Camarero, S.; Guillén, F.; Martinéz, M.; Gutiérrez, A.; del Rio, J.D. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 2005, 8, 195–204. [Google Scholar] [PubMed]
Line | Material | 1. Replica (A) | 2. Replica (A) | 3. Replica (A) | Mean (A) | SD | A-CF.: (2b–2a; … 7b–7a) |
---|---|---|---|---|---|---|---|
1 | CF | 0.391 | 0.398 | 0.385 | 0.392 | 0.007 | |
2a | C | 0.007 | 0.010 | 0.010 | 0.009 | 0.002 | |
2b | C + CF | 0.397 | 0.398 | 0.400 | 0.399 | 0.002 | 0.390 |
3a | L | 0.799 | 0.792 | 0.808 | 0.800 | 0.008 | |
3b | L + CF | 1.083 | 1.072 | 1.089 | 1.081 | 0.009 | 0.281 |
4a | Co-A | 0.278 | 0.279 | 0.283 | 0.280 | 0.003 | |
4b | Co-A + CF | 0.571 | 0.574 | 0.567 | 0.571 | 0.003 | 0.291 |
5a | S-A | 0.378 | 0.380 | 0.382 | 0.380 | 0.002 | |
5b | S-A + CF | 0.776 | 0.770 | 0.780 | 0.775 | 0.005 | 0.395 |
6a | Cu-A | 0.020 | 0.019 | 0.020 | 0.020 | 0.003 | |
6b | Cu-A + CF | 0.236 | 0.236 | 0.235 | 0.235 | 0.001 | 0.215 |
7a | HC | 0.051 | 0.054 | 0.054 | 0.053 | 0.002 | |
7b | HC + CF | 0.300 | 0.303 | 0.304 | 0.302 | 0.002 | 0.249 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobetičová, K.; Ďurišová, K.; Nábělková, J. Caffeine Interactions with Wood Polymers. Forests 2021, 12, 533. https://doi.org/10.3390/f12050533
Kobetičová K, Ďurišová K, Nábělková J. Caffeine Interactions with Wood Polymers. Forests. 2021; 12(5):533. https://doi.org/10.3390/f12050533
Chicago/Turabian StyleKobetičová, Klára, Kristýna Ďurišová, and Jana Nábělková. 2021. "Caffeine Interactions with Wood Polymers" Forests 12, no. 5: 533. https://doi.org/10.3390/f12050533
APA StyleKobetičová, K., Ďurišová, K., & Nábělková, J. (2021). Caffeine Interactions with Wood Polymers. Forests, 12(5), 533. https://doi.org/10.3390/f12050533