Modelling the Material Resistance of Wood—Part 1: Utilizing Durability Test Data Based on Different Reference Wood Species
Abstract
:1. Introduction
- DRd is the material resistance dose [d];
- Dcrit is the critical dose [d] corresponding to decay rating 1 (EN 252 [5]);
- kwa is a factor accounting for the wetting ability of the material [-] relative to a reference wood species;
- kinh is a factor accounting for the inherent protective properties of the material against decay [-] relative to a reference wood species.
2. Materials and Methods
2.1. Wood Specimens
2.2. Decay Tests with Pure Basidiomycete Cultures
- m0,i is the oven-dry mass before incubation (g);
- m0,f is the oven-dry mass after incubation (g).
2.3. Decay Tests in Terrestrial Microcosms (TMCs)
2.3.1. Soil Substrates
2.3.2. Determination of the Soil Moisture Content (MCsoil)
- is the soil moisture content (%);
- is the wet soil mass (g);
- is the oven-dry soil mass (g).
2.3.3. Determination of the Soil-Water Holding Capacity (WHCsoil)
- is the soil water-holding capacity (%);
- is the saturated soil mass (g);
- is the oven-dry soil mass (g).
2.3.4. Preparation of Mixed Soil Substrate
- is the mass of the wet substrate (g);
- is the oven-dry mass of the total soil mixture (g);
- is the fraction of the substrate (sand or compost) in the total soil mixture based on oven-dry mass (%);
- is the moisture content of the soil substrate (%).
- is the target water-holding capacity of the soil mixture (%);
- is the fraction of pure compost substrate in the total soil mixture based on oven-dry mass (%).
2.3.5. Preparation of Mixed Soil to Reach Target Soil Moisture Content (MCsoil,target)
- is the mass of distilled water to add to the soil mixture (g);
- is the target soil moisture content (%);
- is the current moisture content of the soil mixture before adding additional water (%);
- is the oven-dry mass of the total soil mixture (g).
2.4. W24-Tests (24 h Water Uptake and Release Tests)
2.4.1. Liquid Water Uptake by Submersion (LWU)
- LWU is the liquid water uptake during 24 h submersion (%);
- m0 is the oven-dry mass before submersion (g);
- msub is the mass after 24 h submersion (g).
2.4.2. Water Vapor Uptake in Water-Saturated Atmosphere (VU)
- VU is the water vapor uptake during 24 h exposure above water (%);
- m0 is the oven-dry mass before submersion (g);
- m100%RH is the mass after 24 h exposure above water (g).
2.4.3. Desorption (VR)
- VR is the water vapor release during 24 h exposure at 0% RH (%)
- EMC~100%RH is the mass at cell wall saturation (g)
- m0%RH is the mass after 24 h exposure to 0% RH (g)
2.4.4. Capillary Water Uptake (CWU)
- CWU is the capillary water uptake during 200 s (g/cm2);
- m200s is the mass after 200 s in contact with water (g);
- m65%RH is the mass at 20 °C/65% RH (g);
- A = axial specimen surface.
2.5. Statistical Analyses
- is the response;
- is the function;
- is the independent variable;
- are the unknown parameters;
- are the error terms.
- MLf (mass loss) is the response;
- is the population intercept;
- is the population slope coefficient;
- ρ0 is the initial oven-dry density;
- ARW is the annual ring width;
- are the error terms.
3. Results and Discussion
3.1. Wood Species Level
3.2. Location Level-Decay
3.3. Location Level-Moisture
3.4. Correlation Matrix Wood—Effect of Density and Annual Ring Width
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suttie, E.; Brischke, C.; Frühwald Hansson, E.; Fortino, S.; Sandak, J.; Kutnik, M.; Alfredsen, G.; Lucas, C.; Stirling, R. Performance based specification of wood—Introducing project CLICK design. In Proceedings of the IRG Annual Meeting, IRG/WP/19-20661, Quebec City, Canada, 12–16 May 2019; p. 10. [Google Scholar]
- Meyer-Veltrup, L.; Brischke, C.; Niklewski, J.; Frühwald Hanson, E. Design and performance prediction of timber bridges based on a factorization approach. Wood Mat. Sci. Eng. 2018, 13, 167–173. [Google Scholar] [CrossRef]
- EN 1995-1-1. Eurocode 5: Design of Timber Structures—Part. 1-1: General—Common Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Isaksson, T.; Brischke, C.; Thelandersson, S. Development of decay performance models for outdoor timber structures. Mat. Struct. 2013, 46, 1209–1225. [Google Scholar] [CrossRef]
- EN 252. Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative in Ground Contact; European Committee for Standardization: Brussels, Belgium, 2015. [Google Scholar]
- Brischke, C.; Rapp, A.O. Service life prediction of wooden components—Part 1: Determination of dose response functions for above ground decay. In Proceedings of the IRG Annual Meeting, IRG/WP 10-20439, Biarritz, France, 9–13 May 2010; p. 14. [Google Scholar]
- Meyer-Veltrup, L.; Brischke, C.; Alfredsen, G.; Humar, M.; Flæte, P.O.; Isaksson, T.; Larsson Brelid, P.; Westin, M.; Jermer, J. The combined effect of wetting ability and durability on outdoor performance of wood: Development and verification of a new prediction approach. Wood Sci. Technol. 2017, 51, 615–637. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B.; Kržišnik, D.; Brischke, C. Performance of wood decking after 5 years of exposure: Verification of the combined effect of wetting ability and durability. Forests 2019, 10, 903. [Google Scholar] [CrossRef] [Green Version]
- Kržišnik, D.; Brischke, C.; Lesar, B.; Thaler, N.; Humar, M. Performance of wood in the Franja partisan hospital. Wood Mat. Sci. Eng. 2019, 14, 24–32. [Google Scholar] [CrossRef]
- EN 113-2. Durability of Wood and Wood-Based Products—Test. Method against Wood Destroying Basidiomycetes—Part. 2: Assessment of Inherent or Enhanced Durability; European Committee for Standardization: Brussels, Belgium, 2021. [Google Scholar]
- AWPC. Protocols for Assessment of Wood Preservatives; The Australasian Wood Preservation Committee: Birmingham, AL, USA, 2015; p. 36. [Google Scholar]
- AWPA E7-15. Standard Field Test. for Evaluation of Wood Preservatives to Be Used in Ground Contact (UC4A, UC4B, UC4C); Stake Test; American Wood Protection Association: Birmingham, AL, USA, 2015. [Google Scholar]
- AWPA E8-15. Standard Field Test. for Evaluation of Wood Preservatives to Be Used in Ground Contact (UC4A, UC4B, UC4C); Post Test; American Wood Protection Association: Birmingham, AL, USA, 2015. [Google Scholar]
- AWPA E9-15. Standard Field Test. for the Evaluation of Wood Preservatives to Be Used Above Ground (UC3A and UC3B); L-Joint Test; American Wood Protection Association: Birmingham, AL, USA, 2015. [Google Scholar]
- AWPA E16-16. Standard Field Test. for Evaluation of Wood Preservatives to Be used Above Ground (UC3B); Horizontal Lap-Joint Test; American Wood Protection Association: Birmingham, AL, USA, 2016. [Google Scholar]
- AWPA E10-16. Laboratory Method for Evaluating the Decay Resistance of Wood-Based Materials Against Pure Basidiomycete Cultures; Soil/Block Test; American Wood Protection Association: Birmingham, AL, USA, 2016. [Google Scholar]
- AWPA E30-16. Standard Method for Evaluating Natural Decay Resistance of Woods Using Laboratory Decay Tests; American Wood Protection Association: Birmingham, AL, USA, 2016. [Google Scholar]
- AWPA E14-16. Laboratory Method for Rapidly Evaluating the Decay Resistance of Wood-based Materials in Ground Contact: Soil Bed Test; American Wood Protection Association: Birmingham, AL, USA, 2016. [Google Scholar]
- Brischke, C.; Alfredsen, G.; Humar, M.; Conti, E.; Cookson, L.; Emmerich, L.; Flæte, P.O.; Fortino, S.; Francis, L.; Hundhausen, U.; et al. Modelling the material resistance of wood—Part 2: Validation and optimization of the ‘Meyer-Veltrup model’. Forests 2021, 12, 576. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G.; Humar, M.; Conti, E.; Cookson, L.; Emmerich, L.; Flæte, P.O.; Fortino, S.; Francis, L.; Hundhausen, U.; et al. Modelling the material resistance of wood—Part 3: Relative resistance in above and in ground situations—Results of a global survey. Forests 2021, 12, 590. [Google Scholar] [CrossRef]
- Zimmer, K.P.; Høibø, O.A.; Vestøl, G.I.; Larnøy, E. Variation in treatability of Scots pine sapwood: A survey of 25 different northern European locations. Wood Sci. Technol. 2014, 48, 1049–1068. [Google Scholar] [CrossRef]
- CEN/TS 15083-2. Durability of Wood and Wood-Based Products—Determination of the Natural Durability of Solid Wood against Wood-Destroying Fungi, Test. Methods—Part. 2: Soft Rotting Micro-Fungi; European Committee for Standardization (CEN): Brussels, Belgium, 2005. [Google Scholar]
- ISO 11268-2. Soil Quality—Effects of Pollutants on Earthworms—Part. 2: Determination of Effects on Reproduction of Eisenia fetida/Eisenia andrei; International Organisation for Standardization (ISO): Geneva, Switzerland, 2012. [Google Scholar]
- Stirling, R.; Alfredsen, G.; Brischke, C.; De Windt, I.; Francis, L.P.; Frühwald Hansson, E.; Humar, M.; Jermer, J.; Klamer, M.; Kutnik, M.; et al. Global survey on durability variation—On the effect of the reference species. In Proceedings of the IRG Annual Meeting, IRG/WP 16-20573, Lisbon, Portugal, 15–19 May 2016; p. 26. [Google Scholar]
- Sandberg, K.; Salin, J.G. Liquid water absorption in dried Norway spruce timber measured with CT scanning and viewed as a percolation process. Wood Sci. Technol. 2012, 46, 207–219. [Google Scholar] [CrossRef]
Decay | Moisture | |||||
---|---|---|---|---|---|---|
Location | R.p. | T.v. | TMC | W24, EMC~100%RH | CWU | |
Norway spruce | Rippoldsau, DE | 15 | 15 | 15 | 10 | 9 |
Breisgau, DE | 15 | 15 | 15 | 10 | 10 | |
Eastern Finland, FI | 25 | 25 | 50 | 50 | 50 | |
Haute Loire, FR | 15 | 15 | 30 | 10 | 9 | |
Slovenia, SI | 20 | 21 | 45 | 30 | 12 | |
Ribnica, SI | 33 | 33 | 89 | 40 | 4 | |
Hobøl, stand 1, NO | 5 | 5 | 10 | 10 | 10 | |
Hobøl, stand 2, NO | 30 | 30 | 60 | 60 | 60 | |
Hobøl, stand 3, NO | 35 | 35 | 70 | 70 | 69 | |
Total Norway spruce: | 193 | 194 | 384 | 290 | 233 | |
Scots pine sapwood | Northern Zealand, DK | 15 | 15 | 30 | 10 | 10 |
Tartu, stand 1, EE | 25 | 25 | NA | 10 | 5 | |
Tartu, stand 2, EE | 10 | 10 | NA | 4 | 2 | |
Pudasjärvi, stand 1, FI | 15 | 15 | NA | 6 | 3 | |
Heinävesi, stand 3, FI | 5 | 5 | NA | 2 | 1 | |
Raseborg, stand 4, FI | 15 | 15 | NA | 4 | 3 | |
Raseborg, stand 5, FI | 10 | 10 | NA | 4 | 2 | |
Eastern Finland, FI | 25 | 25 | 50 | 50 | 50 | |
St Chély d’apcher, FR | 15 | 15 | 30 | 10 | 10 | |
Oerrel, DE | 15 | 15 | 15 | 10 | 10 | |
Halberstadt, DE | 15 | 15 | 15 | 10 | 10 | |
Unterfranken, DE | 15 | 14 | 15 | 10 | 10 | |
Klaipeda, stand 1, LT | 40 | 40 | NA | 16 | 8 | |
Rognan, stand 1, NO | 5 | 5 | NA | 0 | 0 | |
Berkåk, stand 2, NO | 5 | 5 | NA | 0 | 0 | |
Åkrestrømmen, stand 4, NO | 5 | 5 | NA | 2 | 0 | |
Kongsberg, stand 5, NO | 15 | 15 | NA | 6 | 3 | |
Kongsberg, stand 9, NO | 5 | 5 | NA | 2 | 1 | |
Bergen, stand 7, NO | 5 | 5 | NA | 2 | 1 | |
Bergen, stand 8, NO | 5 | 5 | NA | 2 | 1 | |
Harads, stand 4, SE | 15 | 15 | NA | 6 | 3 | |
Borås, stand 5, SE | 20 | 20 | NA | 6 | 4 | |
Borås, stand 6, SE | 10 | 10 | NA | 4 | 2 | |
Forres, stand 1, Scotland, GB | 10 | 10 | NA | 4 | 2 | |
Munlochy, stand 2, Scotland, GB | 30 | 30 | NA | 12 | 6 | |
Alves, Scotland, GB | 60 | 60 | 120 | 40 | 36 | |
Slovenia, SI | 21 | 22 | 45 | 30 | 8 | |
Northern Spain, ES | 15 | 15 | 69 | 10 | 8 | |
Total Scots pine sapwood: | 446 | 446 | 389 | 272 | 199 | |
European beech | Haute Saône, FR | 15 | 15 | 30 | 10 | 10 |
Reinhausen, DE | 15 | 15 | 15 | 10 | 10 | |
Slovenia, SI | 21 | 21 | 45 | 30 | 8 | |
Switzerland, CH | 21 | 21 | 75 | 30 | 8 | |
Northern Spain, ES | 15 | 15 | NA | 0 | 10 | |
Denmark, DK | 45 | 45 | 90 | 30 | 30 | |
Total beech: | 132 | 132 | 255 | 110 | 76 | |
Total specimens per test: | 771 | 772 | 1028 | 672 | 508 |
Resultant WHCsoil (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Equation (7) | 100 | 93 | 86 | 79 | 72 | 65 | 58 | 51 | 44 | 37 | 30 |
Percentage compost (%) | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
Percentage sand (%) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Norway Spruce | Scots Pine sw | European Beech | |||||||
---|---|---|---|---|---|---|---|---|---|
MLf (%) | kinh (-) | MLf (%) | kinh (-) | MLf (%) | kinh (-) | fspruce/pine sw | fspruce/beech | ||
kinh | R. placenta | 27.17 | 1.00 | 30.66 | 0.89 | 24.82 | 1.09 | 1.13 | 0.91 |
T. versicolor | 21.41 | 1.00 | 24.94 | 0.86 | 29.67 | 0.72 | 1.16 | 1.39 | |
TMC | 19.10 | 1.00 | 18.53 | 1.03 | 18.87 | 1.01 | 0.97 | 0.99 | |
kinh all | 1.00 | 0.95 | 0.96 | 1.05 | 1.04 | ||||
W24 (%) | kwa (-) | W24 (%) | kwa (-) | W24 (%) | kwa (-) | ||||
kwa | liquid uptake | 61.31 | 1.00 | 60.55 | 1.01 | 53.70 | 1.14 | 0.99 | 0.88 |
vapor uptake | 12.17 | 1.00 | 13.97 | 0.87 | 10.48 | 1.16 | 1.15 | 0.86 | |
vapor release | 16.27 | 1.00 | 13.54 | 0.83 | 15.99 | 0.98 | 1.20 | 1.02 | |
CWU (g/cm2) | kwa (-) | CWU (g/cm2) | kwa (-) | CWU (g/cm2) | kwa (-) | ||||
kwa | capillary uptake | 0.30 | 1.00 | 0.29 | 1.03 | 0.21 | 1.43 | 0.97 | 0.70 |
kwaall | 1.00 | 0.94 | 1.18 | 1.07 | 0.85 | ||||
DRd | 325 | 290 | 328 |
Location | MLf (R.p.) [%] | MLf (T.v.) [%] | MLf (TMC) [%] | ||||
---|---|---|---|---|---|---|---|
Norway spruce | Rippoldsau DE | 27.64 | ± 1.24 | 16.91 | ± 4.04 | 18.82 | ± 4.80 |
Breisgau DE | 30.45 | ± 2.05 | 24.71 | ± 1.39 | 12.78 | ± 3.89 | |
E. Finland FI | 26.85 | ± 2.71 | 22.39 | ± 3.39 | 18.05 | ± 6.42 | |
Haute Loire FR | 27.50 | ± 1.81 | 21.85 | ± 2.61 | 24.49 | ± 5.09 | |
Slovenia SI | 30.95 | ± 4.12 | 22.33 | ± 2.90 | 20.35 | ± 5.80 | |
Ribnica SI | 24.39 | ± 1.64 | 16.08 | ± 1.19 | 16.48 | ± 4.19 | |
Hobøl s.1 NO | 31.28 | ± 1.00 | 27.36 | ± 3.74 | 30.57 | ±9.64 | |
Hobøl s.2 NO | 28.53 | ± 3.08 | 23.88 | ± 4.06 | 22.36 | ± 6.45 | |
Hobøl s.3 NO | 24.35 | ± 2.28 | 22.53 | ± 3.49 | 17.04 | ± 4.11 | |
Total mean: | 27.17 | ± 3.46 | 21.41 | ± 4.34 | 19.10 | ± 6.31 | |
N. Zealand DK | 39.24 | ± 1.03 | 23.79 | ± 4.61 | 26.55 | ± 4.99 | |
Scots pine sapwood | Tartu s.1 EE | 28.51 | ± 2.05 | 26.16 | ± 2.58 | NA | |
Tartu s.2 EE | 31.95 | ± 3.21 | 23.38 | ± 1.99 | NA | ||
Pudasjärvi s.1 FI | 29.96 | ± 1.41 | 26.85 | ± 3.37 | NA | ||
Heinävesi s.3 FI | 29.90 | ± 1.16 | 26.80 | ± 1.45 | NA | ||
Raseborg s.4 FI | 30.93 | ± 2.61 | 27.02 | ± 2.00 | NA | ||
Raseborg s.5 FI | 26.26 | ± 1.13 | 25.20 | ± 1.82 | NA | ||
E. Finland FI | 30.45 | ± 1.70 | 24.66 | ± 2.89 | 14.46 | ± 4.34 | |
St Chély d’a. FR | 29.78 | ± 2.23 | 27.12 | ± 3.54 | 16.35 | ± 3.75 | |
Oerrel DE | 35.07 | ± 1.81 | 25.38 | ± 1.94 | 25.17 | ± 3.17 | |
Halberstadt DE | 34.25 | ± 1.14 | 24.58 | ± 2.02 | 19.22 | ± 4.11 | |
Unterfranken DE | 30.79 | ± 0.78 | 24.92 | ± 1.41 | 21.40 | ± 5.87 | |
Klaipeda s.1 LT | 30.01 | ± 2.24 | 22.11 | ± 4.50 | NA | ||
Rognan s.1 NO | 26.94 | ± 1.93 | 28.56 | ± 3.52 | NA | ||
Berkåk s.2 NO | 32.31 | ± 1.81 | 29.75 | ± 6.72 | NA | ||
Åkrestr. s.4 NO | 27.07 | ± 1.91 | 25.51 | ± 1.67 | NA | ||
Kongsb. s.5 NO | 30.77 | ± 0.98 | 25.20 | ± 3.73 | NA | ||
Kongsb. s.9 NO | 34.21 | ± 2.02 | 28.41 | ± 2.35 | NA | ||
Bergen s.7 NO | 26.86 | ± 1.57 | 24.62 | ± 3.16 | NA | ||
Bergen s.8 NO | 30.82 | ± 1.18 | 23.37 | ± 0.87 | NA | ||
Harads s.4 SE | 29.62 | ± 2.29 | 26.70 | ± 3.24 | NA | ||
Borås s.5 SE | 30.25 | ± 1.91 | 25.71 | ± 5.16 | NA | ||
Borås s.6 SE | 31.50 | ± 1.48 | 26.60 | ± 2.12 | NA | ||
Forres s.1 GB | 28.85 | ± 0.93 | 26.20 | ± 2.46 | NA | ||
Munlochy S.2 GB | 27.49 | ± 1.73 | 19.86 | ± 2.60 | NA | ||
Alves GB | 31.05 | ± 1.68 | 24.73 | ± 4.51 | 18.32 | ± 4.92 | |
Slovenia SI | 34.34 | ± 2.58 | 25.01 | ± 1.72 | 17.80 | ± 5.76 | |
N. Spain ES | 26.87 | ± 1.76 | 28.38 | ± 2.40 | 17.58 | ± 3.93 | |
Total mean: | 30.66 | ± 3.20 | 24.94 | ± 3.90 | 18.53 | ± 5.58 | |
European beech | Haute Saône FR | 30.86 | ± 1.12 | 32.55 | ± 2.63 | 22.86 | ± 4.08 |
Reinhausen DE | 14.91 | ± 9.46 | 28.39 | ± 1.58 | 25.38 | ± 4.88 | |
Slovenia SI | 26.09 | ± 1.88 | 28.35 | ± 4.79 | 16.97 | ± 3.41 | |
Switzerland CH | 25.17 | ± 2.61 | 31.91 | ± 5.80 | 18.14 | ± 4.26 | |
N. Spain ES | 30.70 | ± 3.04 | 33.48 | ± 3.22 | NA | ||
Denmark DK | 23.40 | ± 4.07 | 27.44 | ± 3.66 | 18.01 | ± 4.18 | |
Total mean: | 24.82 | ± 6.18 | 29.67 | ± 4.56 | 18.87 | ± 4.70 |
MLf (R.p.) | MLf (T.v.) | MLf (TMC) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | T–K | Mean | T–K | Mean | T–K | Mean | |||||||||||
Hobøl s.1 NO | A | B | C | 31.28 | A | 27.36 | A | 30.57 | |||||||||
Slovenia SI | A | 30.95 | B | 22.33 | C | D | 20.35 | ||||||||||
Breisgau DE | A | B | 30.45 | A | B | 24.71 | F | 12.78 | |||||||||
Hobøl s.2 NO | B | C | D | 28.53 | A | B | 23.88 | B | C | 22.36 | |||||||
Rippoldsau DE | B | C | D | 27.64 | C | 16.91 | C | D | E | F | 18.82 | ||||||
Haute Loire FR | C | D | 27.50 | B | 21.85 | A | B | 24.49 | |||||||||
E. Finland FI | D | 26.85 | B | 22.39 | D | E | 18.05 | ||||||||||
Ribnica SI | E | 24.39 | C | 16.08 | E | F | 16.48 | ||||||||||
Hobøl s.3 NO | E | 24.35 | B | 22.53 | E | F | 17.04 |
MLf (R.p.) | MLf (T.v.) | MLf (TMC) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | T–K | Mean | T–K | Mean | T–K | Mean | ||||||||||||||||
N. Zealand DK | A | 39.24 | A | B | C | 23.79 | A | 26.55 | ||||||||||||||
Oerrel DE | B | 35.07 | A | B | 25.38 | A | B | 25.17 | ||||||||||||||
Slovenia SI | B | C | 34.34 | A | B | 25.01 | C | D | 17.80 | |||||||||||||
Halberstadt DE | B | C | D | 34.25 | A | B | 24.58 | C | D | 19.22 | ||||||||||||
Kongsb. s.9 NO | B | C | D | E | 34.21 | A | 28.41 | NA | ||||||||||||||
Berkåk s.2 NO | B | C | D | E | F | 32.31 | A | 29.75 | NA | |||||||||||||
Tartu s.2 EE | C | D | E | F | 31.95 | A | B | C | 23.38 | NA | ||||||||||||
Borås s.6 SE | D | E | F | 31.50 | A | B | 26.60 | NA | ||||||||||||||
Alves GB | E | F | 31.05 | A | 24.73 | C | D | 18.32 | ||||||||||||||
Raseborg s.4 FI | E | F | 30.93 | A | 27.02 | NA | ||||||||||||||||
Bergen s.8 NO | D | E | F | G | H | I | J | 30.82 | A | B | C | 23.37 | NA | |||||||||
Unterfranken DE | E | F | 30.79 | A | B | 24.92 | B | C | 20.40 | |||||||||||||
Kongsb. s.5 NO | E | F | G | 30.77 | A | B | 25.20 | NA | ||||||||||||||
E. Finland FI | F | G | I | 30.45 | A | B | 24.66 | E | 14.46 | |||||||||||||
Borås s.5 SE | F | G | I | J | 30.25 | A | 25.71 | NA | ||||||||||||||
Klaipeda s.1 LT | F | G | I | J | 30.01 | B | C | 22.11 | NA | |||||||||||||
Pudasjärvi s.1 FI | F | G | I | J | 29.96 | A | 26.85 | NA | ||||||||||||||
Heinävesi s.3 FI | E | F | G | H | I | J | K | 29.90 | A | B | 26.80 | NA | ||||||||||
St Chély d’a. FR | F | G | I | J | 29.78 | A | 27.12 | D | E | 16.35 | ||||||||||||
Harads s.4 SE | F | G | H | I | J | 29.62 | A | 26.70 | NA | |||||||||||||
Forres s.1 GB | F | G | H | I | J | K | 28.85 | A | B | 26.20 | NA | |||||||||||
Tartu s.1 EE | G | H | I | J | K | 28.51 | A | 26.16 | NA | |||||||||||||
Munloc. s.2 GB | H | K | 27.49 | C | 19.86 | NA | ||||||||||||||||
Åkrestr. s.4 NO | H | I | J | K | 27.07 | A | B | C | 25.51 | NA | ||||||||||||
Rognan s.1 NO | H | J | K | 26.94 | A | 28.56 | NA | |||||||||||||||
N. Spain ES | K | 26.87 | A | 28.38 | C | D | 17.58 | |||||||||||||||
Bergen s.7 NO | H | J | K | 26.86 | A | B | C | 24.62 | NA | |||||||||||||
Raseborg s.5 FI | K | 26.26 | A | B | 25.20 | NA |
MLf (R.p.) | MLf (T.v.) | MLf (TMC) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Location | T–K | Mean | T–K | Mean | T–K | Mean | |||||
Haute Saône FR | A | 30.86 | A | B | 32.55 | A | 22.86 | ||||
N. Spain ES | A | 30.70 | A | 33.48 | NA | ||||||
Slovenia SI | B | 26.09 | C | 28.35 | B | 16.97 | |||||
Switzerland CH | B | 25.17 | A | B | 31.91 | B | 18.14 | ||||
Denmark DK | B | 23.40 | C | 27.44 | B | 18.01 | |||||
Reinhausen DE | C | 14.91 | B | C | 28.39 | A | 25.38 |
Location | VU [%] | VR [%] | LWU [%] | CWU [g/cm2] | EMC~100%RH | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Norway spruce | Rippoldsau DE | 13.87 | ± 3.01 | 15.02 | ± 1.05 | 56.97 | ± 5.53 | 0.29 | ± 0.04 | 28.45 | ± 6.44 |
Breisgau DE | 11.89 | ± 1.06 | 14.03 | ± 1.68 | 52.72 | ± 6.07 | 0.21 | ± 0.07 | 27.37 | ± 2.84 | |
E. Finland FI | 12.28 | ± 1.71 | 16.53 | ± 1.47 | 53.13 | ± 7.78 | 0.29 | ± 0.05 | 28.47 | ± 2.02 | |
Haute Loire FR | 14.08 | ± 1.28 | 18.01 | ± 1.02 | 63.27 | ± 7.98 | 0.22 | ± 0.05 | 29.92 | ± 1.89 | |
Slovenia SI | 13.69 | ± 2.39 | 15.75 | ± 1.81 | 71.92 | ± 9.27 | 0.35 | ± 0.05 | 29.40 | ± 2.59 | |
Ribnica SI | 11.27 | ± 2.05 | 15.49 | ± 0.69 | 59.49 | ± 6.66 | 0.42 | ± 0.06 | 29.40 | ± 0.79 | |
Hobøl s.1 NO | 13.58 | ± 1.38 | 17.85 | ± 1.71 | 87.45 | ± 9.18 | 0.51 | ± 0.14 | 30.53 | ± 2.61 | |
Hobøl s.2 NO | 12.41 | ± 1.91 | 17.18 | ± 1.05 | 65.68 | ± 9.74 | 0.33 | ± 0.12 | 29.37 | ± 1.80 | |
Hobøl s.3 NO | 11.06 | ± 1.78 | 16.00 | ± 1.84 | 57.74 | ± 5.01 | 0.28 | ± 0.10 | 28.39 | ± 3.12 | |
Total mean: | 12.17 | ± 2.13 | 16.27 | ± 1.67 | 61.31 | ± 10.71 | 0.30 | ± 0.11 | 28.94 | ± 2.59 | |
Scots pine sapwood | N. Zealand DK | 12.67 | ± 1.45 | 16.25 | ± 0.83 | 86.68 | ± 4.61 | 0.55 | ± 0.05 | 30.31 | ± 1.42 |
Tartu s.1 EE | 17.49 | ± 1.25 | 7.14 | ± 0.66 | 53.47 | ± 2.97 | 0.14 | ± 0.03 | 31.62 | ± 1.31 | |
Tartu s.2 EE | 18.01 | ± 0.20 | 7.92 | ± 0.70 | 58.38 | ± 0.69 | 0.20 | ± 0.10 | 29.64 | ± 0.47 | |
Pudasjärvi s.1 FI | 18.15 | ± 0.22 | 5.95 | ± 0.72 | 55.70 | ± 1.54 | 0.11 | ± 0.04 | 28.21 | ± 0.18 | |
Heinävesi s.3 FI | 19.69 | - | 6.84 | - | 54.77 | - | 0.14 | - | 33.75 | - | |
Raseborg s.4 FI | 19.32 | ± 1.26 | 9.50 | ± 0.02 | 50.28 | ± 5.52 | 0.13 | ± 0.01 | 41.33 | ± 2.18 | |
Raseborg s.5 FI | 16.86 | ± 0.95 | 7.78 | ± 0.08 | 48.20 | ± 5.36 | 0.12 | ± 0.02 | 30.11 | ± 0.31 | |
E. Finland FI | 10.26 | ± 1.77 | 15.80 | ± 2.41 | 49.93 | ± 5.10 | 0.23 | ± 0.07 | 28.43 | ± 2.88 | |
St Chély d’a. FR | 12.28 | ± 1.46 | 16.00 | ± 2.48 | 59.71 | ± 6.39 | 0.24 | ± 0.03 | 28.07 | ± 3.79 | |
Oerrel DE | 12.89 | ± 1.08 | 16.75 | ± 3.85 | 70.34 | ± 4.53 | 0.41 | ± 0.04 | 28.43 | ± 5.42 | |
Halberstadt DE | 10.81 | ± 1.03 | 17.41 | ± 2.10 | 68.60 | ± 4.74 | 0.41 | ± 0.04 | 30.55 | ± 3.04 | |
Unterfranken DE | 14.10 | ± 4.71 | 16.48 | ± 3.65 | 77.65 | ± 14.38 | 0.48 | ± 0.06 | 30.52 | ± 6.32 | |
Klaipeda s.1 LT | 17.80 | ± 0.58 | 6.57 | ± 1.52 | 53.16 | ± 3.67 | 0.15 | ± 0.02 | 28.86 | ± 0.86 | |
Rognan s.1 NO | NA | NA | NA | NA | NA | ||||||
Berkåk s.2 NO | NA | NA | NA | NA | NA | ||||||
Åkrestr. s.4 NO | 20.62 | - | 14.31 | - | 51.71 | - | NA | 37.90 | - | ||
Kongsb. s.5 NO | 21.19 | ± 2.20 | 14.55 | ± 4.27 | 67.68 | ± 17.26 | 0.14 | ± 0.06 | 34.64 | ± 6.24 | |
Kongsb. s.9 NO | 21.58 | - | 8.32 | - | 65.00 | - | 0.14 | - | 25.52 | - | |
Bergen s.7 NO | 20.98 | - | 7.26 | - | 54.82 | - | 0.18 | - | 29.60 | - | |
Bergen s.8 NO | 21.30 | - | 8.36 | - | 57.84 | - | 0.11 | - | 29.51 | - | |
Harads s.4 SE | 20,15 | ± 0.53 | 5.26 | ± 0.89 | 56.84 | ± 2.30 | 0.14 | ± 0.03 | 30.52 | ± 1.28 | |
Borås s.5 SE | 17.94 | ± 0.82 | 6.04 | ± 1.07 | 56.18 | ± 2.41 | 0.13 | ± 0.01 | 28.50 | ± 0.64 | |
Borås s.6 SE | 18.29 | ± 0.08 | 6.89 | ± 0.72 | 56.84 | ± 4.54 | 0.15 | ± 0.01 | 28.80 | ± 0.41 | |
Forres s.1 GB | 19.64 | ± 0.21 | 8.48 | ± 0.83 | 61.89 | ± 0.48 | 0.13 | ± 0.04 | 33.54 | ± 0.83 | |
Munloc. s.2 GB | 18.06 | ± 1.30 | 8.13 | ± 4.74 | 52.80 | ± 4.55 | 0.12 | ± 0.05 | 34.13 | ± 5.62 | |
Alves GB | 11.84 | ± 1.76 | 15.48 | ± 0.90 | 64.49 | ± 3.67 | 0.31 | ± 0.08 | 29.52 | ± 1.47 | |
Slovenia SI | 11.93 | ± 2.16 | 15.30 | ± 0.76 | 67.14 | ± 9.66 | 0.45 | ± 0.06 | 28.95 | ± 0.75 | |
N. Spain ES | 10.99 | ± 1.49 | 15.68 | ± 1.70 | 64.08 | ± 4.21 | 0.46 | ± 0.15 | 29.72 | ± 2.55 | |
Total mean: | 13.97 | ± 3.93 | 13.13 | ± 4.54 | 60.55 | ± 11.04 | 0.29 | ± 0.14 | 29.90 | ± 3.56 | |
European beech | Haute Saône FR | 10.89 ± 1.22 | 17.59 | ± 0.95 | 57.72 | ± 3.36 | 0.19 | ± 0.03 | 30.54 | ± 1.11 | |
Reinhausen DE | 11.70 | ± 3.90 | 16.83 | ± 0.77 | 64.90 | ± 1.64 | 0.15 | ± 0.04 | 30.74 | ± 1.45 | |
Slovenia SI | 9.54 | ± 1.53 | 16.27 | ± 1.52 | 54.21 | ± 3.28 | 0.31 | ± 0.05 | 31.02 | ± 2.40 | |
Switzerland CH | 10.78 | ± 2.06 | 15.08 | ± 0.88 | 46.51 | ± 6.24 | 0.19 | ± 0.03 | 29.07 | ± 1.55 | |
N. Spain ES | NA | NA | NA | 0.27 | ± 0.06 | NA | |||||
Denmark DK | 10.56 | ± 2.84 | 15.82 | ± 0.99 | 55.32 | ± 6.76 | 0.20 | ± 0.03 | 29.83 | ± 1.89 | |
Total mean: | 10.48 | ± 2.39 | 15.99 | ± 1.33 | 53.70 | ± 7.39 | 0.21 | ± 0.06 | 30.10 | ± 2.00 |
LWU | VU | VR | CWU | EMC~100%RH | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | T-K | Mean | T–K | Mean | T–K | Mean | T–K | Mean | T–K | Mean | |||||||||||||
Hobøl s.1 NO | A | 87.45 | A | B | 13.58 | A | 17.85 | A | 0.51 | A | 30.52 | ||||||||||||
Slovenia SI | B | 71.92 | A | 13.69 | B | C | 15.75 | B | C | 0.35 | A | 29.40 | |||||||||||
Breisgau DE | C | 65.68 | A | B | C | 12.41 | A | 17.18 | B | 0.33 | A | 29.37 | |||||||||||
Hobøl s.2 NO | B | C | D | 63.27 | A | B | 14.08 | A | 18.01 | C | D | 0.22 | A | 29.92 | |||||||||
Rippoldsau DE | D | 59.49 | C | D | 11.27 | C | D | 15.49 | A | B | 0.42 | A | 29.40 | ||||||||||
Haute Loire FR | D | 57.74 | D | 11.06 | B | C | 16.00 | B | C | D | 0.28 | A | 28.39 | ||||||||||
E. Finland FI | D | E | 56.97 | A | B | 13.87 | B | C | D | 15.02 | B | C | D | 0.29 | A | 28.45 | |||||||
Ribnica SI | E | 53.13 | B | C | 12.28 | A | B | 16.53 | B | C | D | 0.29 | A | 28.47 | |||||||||
Hobøl s.3 NO | D | E | 52.72 | A | B | C | D | 11.89 | D | 14.03 | D | 0.21 | A | 27.37 |
LWU | VU | VR | CWU | EMC~100%RH | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | T-K | Mean | T–K | Mean | T–K | Mean | T–K | Mean | T–K | Mean | |||||||||||||||||||||
N. Zealand DK | A | 86.68 | C | D | 12.67 | A | 16.25 | A | 0.55 | A | B | C | D | 30.31 | |||||||||||||||||
Unterfrank. DE | A | B | 77.65 | C | 14.10 | A | 16.48 | A | B | 0.48 | A | B | C | D | 30.52 | ||||||||||||||||
Oerrel DE | B | C | 70.34 | C | D | 12.89 | A | 16.75 | B | 0.41 | B | C | D | 28.43 | |||||||||||||||||
Halberstadt DE | B | C | D | 68.60 | D | E | 10.81 | A | 17.41 | B | 0.41 | A | B | C | D | 30.55 | |||||||||||||||
Slovenia SI | C | D | 67.14 | C | D | 11.93 | A | 15.30 | B | 0.45 | C | D | 28.95 | ||||||||||||||||||
Alves GB | C | D | 64.49 | D | 11.84 | A | 15.48 | C | 0.31 | B | C | D | 29.52 | ||||||||||||||||||
N. Spain ES | C | D | E | 64.08 | D | E | 10.99 | A | 15.68 | A | B | 0.46 | A | B | C | D | 29.72 | ||||||||||||||
Norway * | C | D | E | F | 61.77 | A | 21.15 | B | 11.70 | D | E | F | 0.14 | A | B | C | 32.35 | ||||||||||||||
St Chély FR | D | E | F | G | 59.71 | C | D | E | 12.28 | A | 16.00 | C | D | E | 0.24 | C | D | 28.07 | |||||||||||||
Sweden * | E | F | G | 56.59 | B | 18.86 | C | 5.96 | F | 0.14 | B | C | D | 29.33 | |||||||||||||||||
Scotland GB * | F | G | H | 55.07 | B | 18.46 | C | 8.22 | F | 0.12 | A | 33.98 | |||||||||||||||||||
Baltics * | G | H | 53.96 | B | 17.73 | C | 6.94 | E | F | 0.15 | B | C | D | 29.88 | |||||||||||||||||
Finland * | G | H | 52.35 | B | 18.31 | C | 7.41 | F | 0.12 | A | B | 32.66 | |||||||||||||||||||
E. Finland FI | H | 49.93 | E | 10.26 | A | 15.80 | D | 0.23 | D | 28.43 |
LWU | VU | W240%RH | CWU | EMC~100%RH | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | T–K | Mean | T–K | Mean | T–K | Mean | T–K | Mean | T–K | Mean | |||||||
Reinhausen DE | A | 64.90 | A | 11.70 | A | 16.83 | C | 0.15 | A | B | 30.74 | ||||||
Haute Saône FR | B | 57.72 | A | 10.89 | A | 17.59 | B | C | 0.19 | A | B | 30.54 | |||||
Denmark DK | B | 55.32 | A | 10.56 | B | C | 15.82 | B | 0.20 | A | B | 29.83 | |||||
Slovenia SI | B | 54.21 | A | 9.54 | B | 16.27 | A | 0.31 | A | 31.02 | |||||||
Switzerland CH | C | 46.51 | A | 10.78 | C | 15.08 | B | C | 0.19 | B | 29.07 | ||||||
N. Spain ES | NA | NA | NA | A | 0.27 | NA |
Model 1 (ρ0) | Model 2 (ARW) | ||||||||
---|---|---|---|---|---|---|---|---|---|
ρ0 | ARW | ||||||||
R2 | R2 | ||||||||
Norway spruce | |||||||||
R.p. | 0.439 | <0.0001 * | <0.0001 * | 0.093 | <0.0001 * | <0.0001 * | |||
T.v. | 0.040 | <0.0001 * | 0.0052 * | 0.0001 | <0.0001 * | 0.8774 | |||
TMC | 0.325 | <0.0001 * | <0.0001 * | 0.014 | <0.0001 * | 0.0218 * | |||
Scots pine sapwood | |||||||||
R.p. | 0.236 | <0.0001 * | <0.0001 * | 0.085 | <0.0001 * | <0.0001 * | |||
T.v. | 0.037 | <0.0001 * | <0.0001 * | 0.004 | <0.0001 * | 0.1665 | |||
TMC | 0.171 | <0.0001 * | <0.0001 * | 0.005 | <0.0001 * | 0.1780 | |||
European beech | |||||||||
R.p. | 0.030 | <0.0001 * | 0.0459 * | 0.026 | <0.0001 * | 0.067 | |||
T.v. | 0.097 | <0.0001 * | 0.0003 * | 0.0003 | <0.0001 * | 0.8415 | |||
TMC | 0.220 | <0.0001 * | <0.0001 * | 0.013 | <0.0001 * | 0.0687 | |||
Model 3 (ρ0 + ARW) | Model 4 (ρ0 + ARW + ρ0 x ARW) | ||||||||
ρ0 | ARW | ρ0 | ARW | ρ0 x ARW | |||||
R2 | R2 | ||||||||
Norway spruce | |||||||||
R.p. | 0.532 | <0.0001 * | <0.0001 * | <0.0001 * | 0.544 | <0.0001 * | <0.0001 * | 0.0979 | 0.0235 * |
T.v. | 0.078 | <0.0001 * | <0.0001 * | 0.0058 | 0.078 | <0.0001 * | 0.0006 * | 0.0956 | 0.7714 |
TMC | 0.328 | <0.0001 * | <0.0001 * | 0.1827 | 0.362 | <0.0001 * | <0.0001 * | 0.1297 | <0.0001 * |
Scots pine sapwood | |||||||||
R.p. | 0.263 | <0.0001 * | <0.0001 * | <0.0001 * | 0.300 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * |
T.v. | 0.075 | <0.0001 * | <0.0001 * | <0.0001 * | 0.079 | <0.0001 * | <0.0001 * | <0.0001 * | 0.1534 |
TMC | 0.173 | <0.0001 * | <0.0001 * | 0.3784 | 0.203 | <0.0001 * | <0.0001 * | 0.1572 | <0.0001 * |
European beech | |||||||||
R.p. | 0.059 | <0.0001 * | 0.0342 * | 0.0498 * | 0.059 | <0.0001 * | 0.0395 * | 0.0601 | 0.8178 |
T.v. | 0.098 | <0.0001 * | <0.0003 * | 0.8762 | 0.123 | <0.0001 * | <0.0011 * | 0.6042 | 0.0543 |
TMC | 0.235 | <0.0001 * | <0.0001 * | 0.0238 * | 0.241 | <0.0001 * | <0.0001 * | 0.0278 | 0.1897 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfredsen, G.; Brischke, C.; Marais, B.N.; Stein, R.F.A.; Zimmer, K.; Humar, M. Modelling the Material Resistance of Wood—Part 1: Utilizing Durability Test Data Based on Different Reference Wood Species. Forests 2021, 12, 558. https://doi.org/10.3390/f12050558
Alfredsen G, Brischke C, Marais BN, Stein RFA, Zimmer K, Humar M. Modelling the Material Resistance of Wood—Part 1: Utilizing Durability Test Data Based on Different Reference Wood Species. Forests. 2021; 12(5):558. https://doi.org/10.3390/f12050558
Chicago/Turabian StyleAlfredsen, Gry, Christian Brischke, Brendan N. Marais, Robert F. A. Stein, Katrin Zimmer, and Miha Humar. 2021. "Modelling the Material Resistance of Wood—Part 1: Utilizing Durability Test Data Based on Different Reference Wood Species" Forests 12, no. 5: 558. https://doi.org/10.3390/f12050558
APA StyleAlfredsen, G., Brischke, C., Marais, B. N., Stein, R. F. A., Zimmer, K., & Humar, M. (2021). Modelling the Material Resistance of Wood—Part 1: Utilizing Durability Test Data Based on Different Reference Wood Species. Forests, 12(5), 558. https://doi.org/10.3390/f12050558