A Tree-Ring-Based Assessment of Pinus armandii Adaptability to Climate Using Two Statistical Methods in Mt. Yao, Central China during 1961–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Chronology Development
2.3. Meteorological Data
2.4. Methods
3. Results
3.1. Growth Features of P. Armandii in Different Environments
3.2. Regional Climate-Growth Response
3.2.1. Correlation between Chronologies and Regional Climate Factors
3.2.2. Correlation between PC1 and Regional Climate Factors
3.2.3. Correlation between PC1 and Regional scPDSI
3.3. Regional Regression Models of Climate-Growth
4. Discussion
4.1. Climate-Growth Response of Trees in Different Environments
4.2. Correlation between PC1 and Regional Climate
4.2.1. Correlation between PC1 and Regional Climate Factors
4.2.2. Correlation between PC1 and Regional scPDSI
4.3. Comparison of Major Limiting Factors on Tree Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritts, H.C. Tree Rings and Climate; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Gou, X.H.; Deng, Y.; Chen, F.H.; Yang, M.X.; Fang, K.Y.; Gao, L.L.; Yang, T.; Zhang, F. Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years. Chin. Sci. Bull. 2010, 55, 4179–4186. [Google Scholar] [CrossRef]
- Szeicz, J.M.; MacDonald, G.M. Age-dependent tree-ring growth responses of subarctic white spruce to climate. Can. J. For. Res. 1994, 24, 120–132. [Google Scholar] [CrossRef]
- Ettl, G.L.; Peterson, D.L. Extreme climate and variation in tree growth: Individualistic response in subalpine fir (Abies lasiocarpa). Glob. Chang. Biol. 1995, 1, 231–241. [Google Scholar] [CrossRef]
- Gou, X.H.; Chen, F.H.; Yang, M.X.; Li, J.B.; Peng, J.F.; Jin, L.Y. Climatic response of thick leaf spruce (Picea crassifolia) tree-ring width at different elevations over Qilian Mountains, northwestern China. J. Arid. Environ. 2005, 61, 513–552. [Google Scholar] [CrossRef]
- Shen, C.; Wang, L.; Li, M. The altitudinal variability and temporal instability of the climate tree-ring growth relationships for Changbai larch (Larix olgensis Henry) in the Changbai mountains area, Jilin, Northeastern China. Trees 2016, 30, 901–912. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.F.; Li, J.B.; Wang, T.; Huo, J.X.; Yang, L. Effect of altitude on climate–growth relationships of Chinese white pine (Pinus armandii) in the northern Funiu Mountain, central China. Clim. Chang. 2019, 154, 273–288. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Jin, L.Y.; Shao, X.M.; He, Q.; Li, Z.Z. Variations of the spring precipitation day numbers reconstructed from tree rings in the Urumqi River drainage, Tianshan Mts. over the last 370 years. Chin. Sci. Bull. 2003, 48, 1507–1510. [Google Scholar] [CrossRef]
- Liang, E.Y.; Shao, X.M.; Kong, Z.C.; Lin, J.X. The extreme drought in the 1920s and its effect on tree growth deduced from tree ring analysis: A case study in North China. Ann. For. Sci. 2003, 60, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Li, J.B.; Chen, F.H.; Cook, E.R.; Gou, X.H.; Zhang, Y.X. Drought reconstruction for north central China from tree rings: The value of the Palmer drought severity index. Int. J. Climatol. 2007, 27, 903–909. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhang, Q.B.; Ma, K.P.; Shao, X.M. A tree-ring record of 500-year dry-wet changes in northern Tibet, China. Holocene 2008, 18, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tian, Q.H.; Gou, X.H.; Chen, F.H.; Leavitt, S.W.; Wang, Y. Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China. Int. J. Climatol. 2011, 31, 371–381. [Google Scholar] [CrossRef]
- Fang, K.Y.; Gou, X.H.; Chen, F.H.; D’Arrigo, R.; Li, J.B. Tree-ring based drought reconstruction for Guiqing Mountain (China): Linkage to the Indian and Pacific Oceans. Int. J. Climatol. 2010, 30, 1137–1145. [Google Scholar] [CrossRef]
- Fang, K.Y.; Gou, X.H.; Chen, F.H.; Liu, C.Z.; Davi, N.; Li, J.B.; Zhao, Z.Q.; Li, Y.J. Tree-ring based reconstruction of drought variability (1615-2009) in the Kongtong Mountain area, northern China. Glob. Planet. Chang. 2012, 81–82, 190–197. [Google Scholar] [CrossRef]
- Zhang, T.W.; Zhang, R.B.; Jiang, S.X.; Bagila, M.; Ainur, U.; Yu, S.L. On the ‘Divergence Problem’ in the Alatau Mountains, Central Asia: A Study of the Responses of Schrenk Spruce Tree-Ring Width to Climate under the Recent Warming and Wetting Trend. Atmosphere 2019, 10, 473. [Google Scholar] [CrossRef] [Green Version]
- Gou, X.H.; Peng, J.F.; Chen, F.H.; Yang, M.X.; Levia, D.F.; Li, J.B. A dendrochronological analysis of maximum summer half-year temperature variations over the past 700 years on the northeastern Tibetan Plateau. Theor. Appl. Climatol. 2008, 93, 195–206. [Google Scholar] [CrossRef]
- Liang, E.Y.; Leuschner, C.; Dulamsuren, C.; Wagner, B.; Hauck, M. Global warming- related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim. Chang. 2016, 134, 163–176. [Google Scholar] [CrossRef]
- Liu, Y.; Bao, G.; Song, H.M.; Cai, Q.F.; Sun, J.Y. Precipitation reconstruction from Hailar pine, Pinus sylvestris var. mongolica: Tree rings in the Hailar region, Inner Mongolia, China back to 1865 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 282, 81–87. [Google Scholar] [CrossRef]
- Shao, X.M.; Xu, Y.; Yin, Z.Y.; Liang, E.Y.; Zhu, H.F.; Wang, S. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quat. Sci. Rev. 2010, 29, 2111–2122. [Google Scholar] [CrossRef]
- Peng, J.F.; Liu, Y.Z. Reconstructed droughts for the northeastern Tibetan Plateau since AD 1411 year and its linkages to the Pacific, Indian and Atlantic Oceans. Quat. Int. 2013, 283, 98–116. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Evans, M.N.; Lyu, L.X. Moisture dipole over the Tibetan Plateau during the past five and a half centuries. Nat. Commun. 2015, 6, 8062. [Google Scholar] [CrossRef]
- Sun, C.F.; Liu, Y.; Song, H.M.; Cai, Q.F.; Li, Q.; Wang, L.; Mei, R.C.; Fang, C. Sunshine duration reconstruction in the southeastern Tibetan plateau based on tree-ring width and its relationship to volcanic eruptions. Sci. Total Environ. 2018, 628–629, 707–714. [Google Scholar] [CrossRef]
- Shi, J.F.; Lu, H.Y.; Wan, J.D.; Li, S.F.; Nie, H.S. Winter-half year temperature reconstruction of the last century using Pinus armandii Franch. tree-ring width chronologies in the eastern Qinling Mountains. Quat. Sci. 2009, 29, 831–836. (In Chinese) [Google Scholar]
- Shi, J.F.; Li, J.B.; Cook, E.R.; Zhang, X.; Lu, H.Y. Growth response of Pinus tabulaeformis to climate along an elevation gradient in the eastern Qinling Mountains, central China. Clim. Res. 2012, 53, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yuan, Y.J.; Wei, W.S.; Yu, S.L.; Zhang, T.W. Correlations between the summer Asian-Pacific Oscillation Index and the tree-ring width of Pinus massiniana from Sha county Fujian Province. Quat. Sci. 2011, 31, 96–103. (In Chinese) [Google Scholar]
- Duan, J.P.; Zhang, Q.B.; Lv, L.X.; Zhang, C. Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China. Clim. Dynam. 2012, 39, 919–928. [Google Scholar] [CrossRef]
- Duan, J.P.; Zhang, Q.B.; Lv, L.X. Increased Variability in Cold-Season Temperature since the 1930s in Subtropical China. J. Clim. 2013, 26, 4749–4757. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Zhang, Y.; Shao, X.M.; Yin, Z.Y.; Jin, Z. Temperature variability inferred from tree-ring widths in the Dabie Mountains of subtropical central China. Trees 2012, 26, 1887–1894. [Google Scholar] [CrossRef]
- Cai, Q.F.; Liu, Y. The June–September maximum mean temperature reconstruction from Masson pine (Pinus massoniana Lamb.) tree rings in Macheng, southeast China since 1879 AD. Chin. Sci. Bull. 2013, 58 (Suppl. I), 169–177. (In Chinese) [Google Scholar]
- Zhao, Y.S.; Shi, J.F.; Shi, S.Y.; Ma, X.Q.; Zhang, W.J.; Wang, B.W.; Sun, X.G.; Lu, H.Y.; Braeuning, A. Early summer hydroclimatic signals are captured well by tree-ring earlywood width in the eastern Qinling Mountains, central China. Clim. Past 2019, 15, 1113–1131. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Fang, K.Y.; Cao, C.F.; Chen, D.L.; Liang, X.; Dong, Z.P.; Zhang, P. Responses of the radial growth of the endangered species Keteleeria fortunei to climate change in southeastern China. Trees 2019, 33, 977–985. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.Y.; Sun, C.F.; Song, H.M.; Li, Q.; Cai, Q.F.; Liu, R.S. Temperature variation at the low-latitude regions of East Asia recorded by tree rings during the past six centuries. Int. J. Climatol. 2020, 40, 1561–1570. [Google Scholar] [CrossRef]
- Mountain Research Initiative EDW Working Group. Elevation dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.M.; Li, Z.S.; Fan, Z.X. Tree-ring based February-April relative humidity reconstruction since AD 1695 in the Gaoligong Mountains, southeastern Tibetan Plateau. Asian Geogr. 2017, 34, 59–70. [Google Scholar] [CrossRef]
- Yang, B.; He, M.H.; Shishov, V.; Tychkov, I.; Vaganov, E.; Rossi, S.; Ljungqvist, F.C.; Bräuning, A.; Grießinger, J. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl. Acad. Sci. USA 2017, 114, 6966–6971. [Google Scholar] [CrossRef] [Green Version]
- Bräuning, A. Combined view of various tree ring parameters from different forest habitats in Tibet for the reconstruction of seasonal aspects of Asian Monsoon variability. Palaeobotanist 2001, 50, 1–12. [Google Scholar]
- Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chen, F.; Yuan, Y.J.; Wei, W.S.; Yu, S.L.; Wang, H. Tree-ring response of subtropical tree species in southeast china on regional climate and sea-surface temperature variations. Trees 2015, 29, 17–24. [Google Scholar] [CrossRef]
- Lyu, L.X.; Deng, X.; Zhang, Q.B. Elevation pattern in growth coherency on the southeastern Tibetan Plateau. PLoS ONE 2016, 11, e0163201. [Google Scholar] [CrossRef]
- Lyu, L.X.; Suvanto, S.; Nöjd, P.; Henttonen, H.M.; Zhang, Q.B. Tree growth and its climate signal along latitudinal and altitudinal gradients: Comparison of tree rings between Finland and Tibetan Plateau. Biogeosci. Discuss. 2017, 14, 3083–3095. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.F.; Gou, X.H.; Chen, F.H.; Fang, K.Y.; Zhang, F. Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China’s Qinghai Province. Chin. J. Plant Ecol. 2010, 34, 517–525. (In Chinese) [Google Scholar]
- Wang, T.; Ren, S.Y.; Chen, Y.; Yuan, Z.L.; Li, L.X.; Pan, N.; Ye, Y.Z. Dynamic of carbon storage of Pinus armandii forest at different diameter levels based on tree ring data in the Baotianman National Nature Reserve, central China. Chin. Sci. Bull. 2014, 59, 3499–3507. (In Chinese) [Google Scholar]
- Wang, T.; Li, C.; Zhang, H.; Ren, S.Y.; Li, L.X.; Pan, N.; Yuan, Z.L.; Ye, Y.Z. Response of conifer trees radial growth to climate change in Baotianman National Nature Reserve, central China. Acta Ecol. Sin. 2016, 36, 5324–5332. (In Chinese) [Google Scholar]
- Liu, N.; Liu, Y.; Zhou, Q.; Bao, G. Droughts and broad-scale climate variability reflected by temperature-sensitive tree growth in the Qinling Mountains, central China. Int. J. Biometeorol. 2013, 57, 169–177. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.J.; Song, H.M.; Ma, Y.; Cai, Q.F.; Wang, Y.C. Tree-ring reconstruction of seasonal mean minimum temperature at Mt. Yaoshan, China, since 1873 and its relevance to 20th-century warming. Clim. Past Discuss. 2014, 10, 859–894. [Google Scholar]
- Liu, Y.; Liu, H.; Song, H.M.; Li, Q.; Burr, G.S.; Wang, L.; Hu, S.L. A 174-year Asian summer monsoon related relative humidity record from tree-ring δ18O in the Yaoshan region, eastern central China. Sci. Total Environ. 2017, 593/594, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Li, J.; Yang, L.; Li, J.; Huo, J. A 216-year tree-ring reconstruction of April–July relative humidity from Mt. Shiren, central China. Int. J. Climatol. 2020, 40, 6055–6066. [Google Scholar] [CrossRef]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree Ring Dating; The University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–75. [Google Scholar]
- Cook, E.R.; Holmes, R.L. Users Manual for ARSTAN; Laboratory of Tree-Ring Research, University of Arizona: Tucson, AZ, USA, 1986. [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. (Eds.) Methods of Dendrochronology: Applications in the Environmental Sciences; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Van der Schrier, G.; Briffa, K.R.; Jones, P.D.; Osborn, T.J. Summer moisture variability across Europe. J. Clim. 2006, 19, 2818–2834. [Google Scholar] [CrossRef]
- Lu, W.D.; Zhu, H.B. SPSS Statistical Analysis, 5th ed.; Electronic Industry Press: Beijing, China, 2015. [Google Scholar]
- Biondi, F.; Waikul, K. Dendroclim 2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 2004, 30, 303–311. [Google Scholar] [CrossRef]
- Wigley, T.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Peng, J.F.; Gou, X.H.; Chen, F.H.; Li, J.B.; Liu, P.X.; Zhang, Y. Altitudinal variability of climate–tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau. Dendrochronologia 2008, 26, 87–96. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, Y.; Wang, M.C.; Kang, X.Y.; Zhang, W.T.; Zhang, L.N.; Zhao, S.D. Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan Mountains, northwest China. Dendrochronologia 2016, 40, 117–127. [Google Scholar] [CrossRef]
- Huo, Y.X.; Gou, X.H.; Liu, W.H.; Li, J.B.; Zhang, F.; Fang, K.Y. Climate–growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan Mountains, northwest China. Trees 2017, 31, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; Research Paper 45; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; p. 58.
Statistics | YS01 | YS02 | YS03 | YS04 |
---|---|---|---|---|
Samplings cores (Trees) | 38(20) | 53(36) | 40(26) | 34(19) |
Latitude Longitude Elevation(M) | 33°43′34″ | 33°43′21″ | 33°42′51″ | 33°42′57″ |
112°14′42″ | 112°14′36″ | 112°14′56″ | 112°14′53″ | |
1851 | 2070 | 2016 | 2050 | |
Slope | N | SW | S | NW |
Mean Sensitivity(M.S.) | 0.245 | 0.213 | 0.265 | 0.283 |
Standard Deviation (S.D.) | 0.226 | 0.187 | 0.222 | 0.24 |
First year | 1785 | 1831 | 1920 | 1855 |
Begin year of SSS > 0.80(year) | 1913 | 1868 | 1961 | 1872 |
Common period (period) | 1980–2015 | |||
Mean correlation between all series(r1) | 0.274 | 0.299 | 0.434 | 0.281 |
Mean correlation within a tree(r2) | 0.743 | 0.6 | 0.740 | 0.646 |
Mean correlation between trees(r3) | 0.261 | 0.294 | 0.428 | 0.271 |
Signal-to-noise ratio(SNR) | 12.469 | 18.355 | 25.297 | 11.699 |
Expressed population signal(EPS) | 0.926 | 0.948 | 0.962 | 0.921 |
YS01 | YS02 | YS03 | YS04 | |
---|---|---|---|---|
YS01 | 1 | |||
YS02 | 0.437 ** | 1 | ||
YS03 | 0.293 * | 0.370 ** | 1 | |
YS04 | 0.418 ** | 0.621 ** | 0.531 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Li, J.; Li, J.; Li, X.; Cui, J.; Peng, M.; Huo, J.; Yang, L. A Tree-Ring-Based Assessment of Pinus armandii Adaptability to Climate Using Two Statistical Methods in Mt. Yao, Central China during 1961–2016. Forests 2021, 12, 780. https://doi.org/10.3390/f12060780
Peng J, Li J, Li J, Li X, Cui J, Peng M, Huo J, Yang L. A Tree-Ring-Based Assessment of Pinus armandii Adaptability to Climate Using Two Statistical Methods in Mt. Yao, Central China during 1961–2016. Forests. 2021; 12(6):780. https://doi.org/10.3390/f12060780
Chicago/Turabian StylePeng, Jianfeng, Jingru Li, Jinbao Li, Xuan Li, Jiayue Cui, Meng Peng, Jiaxin Huo, and Liu Yang. 2021. "A Tree-Ring-Based Assessment of Pinus armandii Adaptability to Climate Using Two Statistical Methods in Mt. Yao, Central China during 1961–2016" Forests 12, no. 6: 780. https://doi.org/10.3390/f12060780
APA StylePeng, J., Li, J., Li, J., Li, X., Cui, J., Peng, M., Huo, J., & Yang, L. (2021). A Tree-Ring-Based Assessment of Pinus armandii Adaptability to Climate Using Two Statistical Methods in Mt. Yao, Central China during 1961–2016. Forests, 12(6), 780. https://doi.org/10.3390/f12060780