Changes in Deep Soil Water Content in the Process of Large-Scale Apple Tree Planting on the Loess Tableland of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Collection
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Vertical Distribution of SWC in Apple Orchards
3.2. Effects of Stand Age on SWC
3.3. SWC in Different Planting Density Orchards
3.4. Changes of SWC in Different Precipitation Regions
4. Discussion
4.1. Deep Soil Water Depletion in Apple Orchards
4.2. Factors Affecting SWC in Apple Orchards
4.3. Implications for Orchard Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, X.D.; Li, H.C.; Zhao, X.N.; Ma, W.; Wu, P.T. Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma 2018, 319, 61–69. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Wang, L.; Zhang, X.; Daryanto, S.; Fang, X. Spatial variations of soil moisture under Caragana korshinskii Kom. from different precipitation zones: Field based analysis in the Loess Plateau, China. Forests 2016, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Wang, D.; Wang, Y.P. Importance of temporal scale in assessing changes in soil-water storage in apple orchards on the Chinese Loess Plateau. Forests 2020, 11, 793. [Google Scholar] [CrossRef]
- Zweifel, R.; Zimmermann, L.; Newbery, D.M. Modeling tree water deficit from microclimate: An approach to quantifying drought stress. Tree Physiol. 2005, 25, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO (Food and Agriculture Organization). FAO Statistical Databases. 2016. Available online: http://www.fao.org/home/en/ (accessed on 30 June 2020).
- China Agriculture Statistical Report. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2018. Available online: www.moa.gov.cn (accessed on 30 October 2020).
- Li, H.J.; Si, B.C.; Wu, P.T.; McDonnell, J.J. Water mining from the deep critical zone by apple trees growing on loess. Hydrol. Process. 2019, 33, 320–327. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Liu, Z.P.; Zhang, C.C. Characteristics of dried soil layers under apple orchards of different ages and their applications in soil water managements on the Loess Plateau of China. Pedosphere 2015, 25, 546–554. [Google Scholar] [CrossRef]
- Ye, M.T.; Zhao, X.N.; Biswas, A.; Huo, G.; Yang, B.; Zou, Y.; Siddique, K.H.M.; Gao, X.D. Measurements and modeling of hydrological responses to summer pruning in dryland apple orchards. J. Hydrol. 2020, 125651. [Google Scholar] [CrossRef]
- Deng, L.; Yan, W.; Zhang, Y.; Shangguan, Z. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. For. Ecol. Manag. 2016, 366, 1–10. [Google Scholar] [CrossRef]
- Sun, L.; Huang, Z.; Cui, Z.; Lu, R.; Zhang, R.-Q.; Liu, Y.; Lopez-Vicente, M.; Ahirwal, J.; Wei, X.-H.; Wu, G.-L. Soil water depletion in planted alfalfa pastures in an Alpine Pastoral area. Water 2018, 10, 1538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, L.; Su, J.Y. The soil water condition of a typical agroforestry system under the policy of Northwest China. Forests 2018, 9, 730. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.M.; Fu, B.J.; Piao, S.; Wang, S.H.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Liu, Z. Large-scale spatial variability of dried soil layers and related factors across the entire Loess Plateau of China. Geoderma 2010, 159, 99–108. [Google Scholar] [CrossRef]
- Yan, W.M.; Deng, L.; Zhong, Y.; Shangguan, Z. The characters of dry soil layer on the Loess Plateau in China and their influencing factors. PLoS ONE 2015, 10, e0134902. [Google Scholar] [CrossRef] [PubMed]
- Markewitz, D.; Devine, S.; Davidson, E.A.; Brando, P.; Nepstad, D.C. Soil moisture depletion under simulated drought in the Amazon: Impacts on deep root uptake. New Phytol. 2010, 187, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.; Harper, R.J.; Smettem, K.R.J. Soil water depletion by Eucalyptus spp. integrated into dryland agricultural systems. Plant. Soil 2006, 286, 141–151. [Google Scholar] [CrossRef]
- Huang, M.B.; He, F.H.; Yang, X.M.; Li, Y.S. Effect of apple production base on regional water cycle in Weibei upland of the Loess Plateau. J. Geogr. Sci. 2001, 11, 239–243. [Google Scholar]
- Song, X.L.; Gao, X.D.; Dyck, M.; Zhang, W.; Wu, P.T. Soil water and root distribution of apple tree (Malus pumila Mill) stands in relation to stand age and rainwater collection and infiltration system (RWCI) in a hilly region of the Loess Plateau, China. Catena 2018, 170, 324–334. [Google Scholar] [CrossRef]
- Bao, R.; Zou, Y.J.; Ma, F.W.; She, X.F.; Dang, Z.M.; He, W.C. Effects of planting year and density on deep soil desiccation of apple orchards in Weibei dryland. Trans. Chin. Soc. Agric. Eng. 2016, 32, 143–149. [Google Scholar]
- Zhang, J.; Wang, L. The impact of land use on water loss and soil desiccation in the soil profile. Hydrogeol. J. 2018, 26, 185–196. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Si, B.; Li, M.; Li, H. Deficit and recovery of deep soil water following a full cycle of afforestation and deforestation of apple trees on the Loess Plateau, China. Water 2020, 12, 989. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.S.; Shao, M.A.; Li, Y.Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Nepstad, D.; Lefebvre, P.; Da Silva, U.L.; Tomasella, J.; Schlesinger, P.; Solorzano, L.; Moutinho, P.; Ray, D.; Benito, J.G. Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Glob. Chang. Biol. 2004, 10, 704–717. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Li, M.; Si, B.C.; Feng, H. Deep rooted apple trees decrease groundwater recharge in the highland region of the Loess Plateau, China. Sci. Total Environ. 2018, 622, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Shao, M.A.; Sun, H.; Fu, Z.H.; Fan, J.; Hu, W.; Fang, L. Response of deep soil drought to precipitation, land use and topography across a semiarid watershed. Agric. For. Meteorol. 2020, 282, 107866. [Google Scholar] [CrossRef]
- Li, J.; Chen, B.; Li, X.F.; Zhao, Y.J.; Jang, B.; Ciren, Y.; Hu, W.; Cheng, J.; Shao, M. Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China. Acta Ecol. Sin. 2008, 28, 1429–1445. [Google Scholar]
- Wang, D.; Wang, L. Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China. Agric. Water Manag. 2017, 191, 1–15. [Google Scholar]
- Wang, Y.P.; Han, M.Y.; Zhang, L.S.; Mao, C.P.; Lei, Y.S. Spatial characteristics of soil mositure of apple orchards in the Loess Plateau of Shaanxi Province. Sci. Silvae Sin. 2013, 49, 16–25. [Google Scholar]
- Suo, G.D.; Xie, Y.S.; Zhang, Y.; Cai, M.Y.; Wang, X.S.; Chuai, J.F. Crop load management (CLM) for sustainable apple production in China. Sci. Hortic. 2016, 211, 213–219. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Jia, X.; Shao, M. Loess thickness variations across the Loess Plateau of China. Surv. Geophys. 2018, 39, 715–727. [Google Scholar] [CrossRef]
- Huang, Y.N.; Chang, Q.R.; Li, Z. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China. Sci. Total Environ. 2018, 628–629, 443–452. [Google Scholar]
- Tang, X.; Miao, C.; Xi, Y.; Duan, Q.; Lei, X.; Li, H. Analysis of precipitation characteristics on the loess plateau between 1965 and 2014, based on high-density gauge observations. Atmos. Res. 2018, 213, 264–274. [Google Scholar] [CrossRef]
- Zhu, X.M.; Li, Y.S.; Peng, X.L.; Zhang, S.G. Soils of the loess region in China. Geoderma 1983, 29, 237–255. [Google Scholar]
- Li, Y.S. The properties of water cycle in soil and their effect on water cycle for land in the Loess Plateau. Acta Ecol. Sin. 1983, 3, 91–101. [Google Scholar]
- Wang, L.; Wang, Q.J.; Wei, S.P.; Shao, M.A.; Yi, L. Soil desiccation for Loess soils on natural and regrown areas. For. Ecol. Manag. 2008, 255, 2467–2477. [Google Scholar] [CrossRef]
- Powers, J.S.; Corre, M.D.; Twine, T.E.; Edzo, V. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl. Acad. Sci. USA 2011, 108, 6318–6322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Hui, D.; Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 2006, 87, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Jipp, P.H.; Nepstad, D.C.; Cassel, D.K.; Carvalho, C.R.D. Deep Soil Moisture Storage and Transpiration in Forests and Pastures of Seasonally-Dry Amazonia. Clim. Chang. 1998, 39, 395–412. [Google Scholar] [CrossRef]
- Mahmood, R.; Hubbard, K.G. Relationship between soil moisture of near surface and multiple depths of the root zone under heterogeneous land uses and varying hydroclimatic conditions. Hydrol. Process. 2010, 21, 3449–3462. [Google Scholar] [CrossRef]
- Esteban Lucas-Borja, M.; Zema, D.A.; Antonio Plaza-Alvarez, P.; Zupanc, V.; Baartman, J.; Sagra, J.; Gonzalez-Romero, J.; Moya, D.; de las Heras, J. Effects of different land uses (abandoned farmland, intensive agriculture and forest) on soil hydrological properties in Southern Spain. Water 2019, 11, 503. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Jia, X.; Zhu, Y.; Shao, M.a. Long-term temporal variations of soil water content under different vegetation types in the Loess Plateau, China. Catena 2017, 158, 55–62. [Google Scholar] [CrossRef]
- Song, X.; Gao, X.; Zhao, X.; Wu, P.; Dyck, M. Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China. Agric. Water Manag. 2017, 184, 170–177. [Google Scholar] [CrossRef]
- Liu, Z.J.; Ma, P.Y.; Zhai, B.N.; Zhou, J.B. Soil moisture decline and residual nitrate accumulation after converting cropland to apple orchard in a semiarid region: Evidence from the Loess Plateau. Catena 2019, 181, 104080. [Google Scholar] [CrossRef]
- Pan, F.F.; Nieswiadomy, M.; Qian, S. Application of a soil moisture diagnostic equation for estimating root-zone soil moisture in arid and semi-arid regions. J. Hydrol. 2015, 524, 296–310. [Google Scholar] [CrossRef]
- Green, S.; Clothier, B. The root zone dynamics of water uptake by a mature apple tree. Plant. Soil 1999, 206, 61–77. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L. Canopy interception of apple orchards should not be ignored when assessing evapotranspiration partitioning on the Loess Plateau in China. Hydrol. Process. 2019, 33, 372–382. [Google Scholar] [CrossRef]
- Meng, Q.Q. Soil Moisture Consimption Pattern and Growth Response of Apple Orchard in Loess Plateau. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2011. [Google Scholar]
- Zou, Y.J.; Chen, J.X.; Ma, F.W.; She, X.F.; Dang, Z.M.; Qu, J.T. Characteristics of soil moisture change of apple orchards of different planting years in Weibei fryland. Agric. Res. Arid Areas 2011, 29, 41–43. [Google Scholar]
- Jiao, L.; An, W.M.; Li, Z.S.; Gao, G.Y.; Wang, C. Regional variation in soil water and vegetation characteristics in the Chinese Loess Plateau. Ecol. Indic. 2020, 115, 106399. [Google Scholar] [CrossRef]
- Liu, W.Z.; Zhang, X.C.; Dang, T.H.; Zhu, O.Y.; Li, Z.; Wang, J.; Wang, R.; Gao, C.Q. Soil water dynamics and deep soil recharge in a record wet year in the southern Loess Plateau of China. Agric. Water Manag. 2010, 97, 1133–1138. [Google Scholar] [CrossRef]
- Rempe, D.M.; Dietrich, W.E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl. Acad. Sci. USA 2018, 115, 2664–2669. [Google Scholar] [CrossRef] [Green Version]
- Li, M.X.; Du, S.N.; Bai, G.S.; Geng, G.J. Effects of renewal pruning on soil moisture and growth of apple tree. J. Zhejiang Univ. 2012, 38, 467–476. [Google Scholar]
- Robinson, T.L. Crop load management of new high-density apple orchards. N. Y. Fruit Q. 2008, 16, 3–7. [Google Scholar]
Basic Information | Values |
---|---|
Number of publications | 44 |
Number of sampling sites | 162 |
Longitude (°E) | 101.63~109.75 |
Latitude (°N) | 34.02~36.20 |
Mean annual precipitation (mm) | 503~622 |
Air temperature (°C) | 8.3~13.5 |
Stand age (years) | 3~37 |
Planting density (trees/ha) | 416~1666 |
Field capacity (%) | 20.2~23.0 |
Measured depth (m) | 5.0~23.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yan, W.; Han, X.; Pan, F.; Cheng, L.; Liu, W. Changes in Deep Soil Water Content in the Process of Large-Scale Apple Tree Planting on the Loess Tableland of China. Forests 2021, 12, 123. https://doi.org/10.3390/f12020123
Wang Y, Yan W, Han X, Pan F, Cheng L, Liu W. Changes in Deep Soil Water Content in the Process of Large-Scale Apple Tree Planting on the Loess Tableland of China. Forests. 2021; 12(2):123. https://doi.org/10.3390/f12020123
Chicago/Turabian StyleWang, Yaping, Weiming Yan, Xiaoyang Han, Feifei Pan, Liping Cheng, and Wenzhao Liu. 2021. "Changes in Deep Soil Water Content in the Process of Large-Scale Apple Tree Planting on the Loess Tableland of China" Forests 12, no. 2: 123. https://doi.org/10.3390/f12020123
APA StyleWang, Y., Yan, W., Han, X., Pan, F., Cheng, L., & Liu, W. (2021). Changes in Deep Soil Water Content in the Process of Large-Scale Apple Tree Planting on the Loess Tableland of China. Forests, 12(2), 123. https://doi.org/10.3390/f12020123